Anis Fatima, Muhammad Wasif, Aqeel Ahmed, Saima Yaqoob
{"title":"Effect of rake face surface of cutting tool on tool crater wear","authors":"Anis Fatima, Muhammad Wasif, Aqeel Ahmed, Saima Yaqoob","doi":"10.1051/mfreview/2023013","DOIUrl":null,"url":null,"abstract":"Tool wear is complex to predict due to the intricate environment of a machining process. However, there are a confrontational effect of tool wear on the machining process in terms of deprived surface finish, reduced dimensional accuracy and increased power consumption. In this study an attempt is made to examine the effect of rake face surface of the cutting tool on tool crater wear. For this, three different types; uncoated, coated and structured rake face cutting tools were used and cutting test were performed of plain carbon steel (AISI/SAE 4140). The cutting speed of 283 m/min, feed rate of 0.1 mm/min and depth of cut of 0.1 were used. Results show, structured rake face of the cutting tool benefitted most in supressing the tool crater wear. Energy-Dispersive X -Ray analysis (EDXA) analysis confirms reduction in iron transfer on tool rake face in case of coated and structured cutting tool. Micro − hardness test was also performed and the values in case of coated and structured cutting tool was found to be suffice. This study can be a benefit for cutting difficult to cut material where crater wear formation is unavoidable.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"3 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2023013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Tool wear is complex to predict due to the intricate environment of a machining process. However, there are a confrontational effect of tool wear on the machining process in terms of deprived surface finish, reduced dimensional accuracy and increased power consumption. In this study an attempt is made to examine the effect of rake face surface of the cutting tool on tool crater wear. For this, three different types; uncoated, coated and structured rake face cutting tools were used and cutting test were performed of plain carbon steel (AISI/SAE 4140). The cutting speed of 283 m/min, feed rate of 0.1 mm/min and depth of cut of 0.1 were used. Results show, structured rake face of the cutting tool benefitted most in supressing the tool crater wear. Energy-Dispersive X -Ray analysis (EDXA) analysis confirms reduction in iron transfer on tool rake face in case of coated and structured cutting tool. Micro − hardness test was also performed and the values in case of coated and structured cutting tool was found to be suffice. This study can be a benefit for cutting difficult to cut material where crater wear formation is unavoidable.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.