Distribution System Reconfiguration and Capacitor Placement for Loss Reduction by Ant Colony Algorithm

Q2 Energy
M. J. Kasaei, H. Norouzi
{"title":"Distribution System Reconfiguration and Capacitor Placement for Loss Reduction by Ant Colony Algorithm","authors":"M. J. Kasaei, H. Norouzi","doi":"10.15866/irecon.v11i2.23877","DOIUrl":null,"url":null,"abstract":"High current amounts, low voltage level and radial structure assign high percentage of active power loss in distribution system. There are many means in reducing the active power loss of distribution networks; this paper introduces an ant colony algorithm to solve the optimal network reconfiguration and capacitor placement problem for power loss reduction and voltage profile enhancement in distribution networks. The ant colony algorithm was inspired from natural behavior of the ant colonies on how they find the food source and bring them back to their nest by building the unique trial formation. Ants of artificial colony are able to search for the successively shorter feasible routes by using information accumulated in the form of a pheromone trial deposited on the edge of their traveling path. The proposed approach is demonstrated employing one distribution network. Computational results show that by taking into account feeder reconfiguration and capacitor placement simultaneously, one can be minimize losses more efficiently by considering them separately.","PeriodicalId":37583,"journal":{"name":"International Journal on Energy Conversion","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/irecon.v11i2.23877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

High current amounts, low voltage level and radial structure assign high percentage of active power loss in distribution system. There are many means in reducing the active power loss of distribution networks; this paper introduces an ant colony algorithm to solve the optimal network reconfiguration and capacitor placement problem for power loss reduction and voltage profile enhancement in distribution networks. The ant colony algorithm was inspired from natural behavior of the ant colonies on how they find the food source and bring them back to their nest by building the unique trial formation. Ants of artificial colony are able to search for the successively shorter feasible routes by using information accumulated in the form of a pheromone trial deposited on the edge of their traveling path. The proposed approach is demonstrated employing one distribution network. Computational results show that by taking into account feeder reconfiguration and capacitor placement simultaneously, one can be minimize losses more efficiently by considering them separately.
基于蚁群算法的配电系统重构与电容布置
大电流、低电压和径向结构决定了配电系统有功损耗的高比例。降低配电网有功损耗的方法有很多;本文介绍了一种蚁群算法,用于解决配电网中降低损耗和提高电压分布的最优网络重构和电容器布置问题。蚁群算法的灵感来自于蚁群的自然行为,即它们如何通过构建独特的试验队形来找到食物来源并将它们带回巢穴。人工蚁群的蚁群能够利用蚁群移动路径边缘的信息素试验积累的信息,依次寻找较短的可行路径。该方法以一个配电网为例进行了验证。计算结果表明,同时考虑馈线重构和电容器布置,可以更有效地减小损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal on Energy Conversion
International Journal on Energy Conversion Energy-Nuclear Energy and Engineering
CiteScore
3.30
自引率
0.00%
发文量
8
期刊介绍: The International Journal on Energy Conversion (IRECON) is a peer-reviewed journal that publishes original theoretical and applied papers on all aspects regarding energy conversion. It is intended to be a cross disciplinary and internationally journal aimed at disseminating results of research on energy conversion. The topics to be covered include but are not limited to: generation of electrical energy for general industrial, commercial, public, and domestic consumption and electromechanical energy conversion for the use of electrical energy, renewable energy conversion, thermoelectricity, thermionic, photoelectric, thermal-photovoltaic, magneto-hydrodynamic, chemical, Brayton, Diesel, Rankine and combined cycles, and Stirling engines, hydrogen and other advanced fuel cells, all sources forms and storage and uses and all conversion phenomena of energy, static or dynamic conversion systems and processes and energy storage (for example solar, nuclear, fossil, geothermal, wind, hydro, and biomass, process heat, electrolysis, heating and cooling, electrical, mechanical and thermal storage units), energy efficiency and management, sustainable energy, heat pipes and capillary pumped loops, thermal management of spacecraft, space and terrestrial power systems, hydrogen production and storage, nuclear power, single and combined cycles, miniaturized energy conversion and power systems, fuel cells and advanced batteries, industrial, civil, automotive, airspace and naval applications on energy conversion. The Editorial policy is to maintain a reasonable balance between papers regarding different research areas so that the Journal will be useful to all interested scientific groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信