Tate Duality In Positive Dimension over Function Fields

IF 2 4区 数学 Q1 MATHEMATICS
Zev Rosengarten
{"title":"Tate Duality In Positive Dimension over Function Fields","authors":"Zev Rosengarten","doi":"10.1090/memo/1444","DOIUrl":null,"url":null,"abstract":"We extend the classical duality results of Poitou and Tate for finite discrete Galois modules over local and global fields (local duality, nine-term exact sequence, etc.) to all affine commutative group schemes of finite type, building on the recent work of Česnavičius (“Poitou-Tate without restrictions on the order,” 2015) extending these results to all finite commutative group schemes. We concentrate mainly on the more difficult function field setting, giving some remarks about the number field case along the way.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"13 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1444","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

We extend the classical duality results of Poitou and Tate for finite discrete Galois modules over local and global fields (local duality, nine-term exact sequence, etc.) to all affine commutative group schemes of finite type, building on the recent work of Česnavičius (“Poitou-Tate without restrictions on the order,” 2015) extending these results to all finite commutative group schemes. We concentrate mainly on the more difficult function field setting, giving some remarks about the number field case along the way.
函数域上正维的Tate对偶性
我们将局部和全局域上有限离散Galois模的经典对偶结果(局部对偶,九项精确序列等)推广到有限类型的所有仿射交换群方案,建立在Česnavičius最近的工作(“Poitou-Tate without restrictions on the order,”2015)的基础上,将这些结果推广到所有有限交换群方案。我们主要集中在较困难的函数域设置上,并在此过程中对数字域的情况做了一些说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信