Disagreement coupling of Gibbs processes with an application to Poisson approximation

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Moritz Otto
{"title":"Disagreement coupling of Gibbs processes with an application to Poisson approximation","authors":"Moritz Otto","doi":"10.1214/22-aap1916","DOIUrl":null,"url":null,"abstract":"We discuss a thinning and an embedding procedure to construct finite Gibbs processes with a given Papangelou intensity. Extending the approach of Hofer-Temmel (Electron. J. Probab. 24 (2019) 1–22) and Hofer-Temmel and Houdebert (Stochastic Process. Appl. 129 (2019) 3922–3940) we will use this to couple two finite Gibbs processes with different boundary conditions. As one application we will establish Poisson approximation of point processes derived from certain infinite volume Gibbs processes via dependent thinning. As another application we shall discuss empty space probabilities of certain Gibbs processes.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"100 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1916","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

Abstract

We discuss a thinning and an embedding procedure to construct finite Gibbs processes with a given Papangelou intensity. Extending the approach of Hofer-Temmel (Electron. J. Probab. 24 (2019) 1–22) and Hofer-Temmel and Houdebert (Stochastic Process. Appl. 129 (2019) 3922–3940) we will use this to couple two finite Gibbs processes with different boundary conditions. As one application we will establish Poisson approximation of point processes derived from certain infinite volume Gibbs processes via dependent thinning. As another application we shall discuss empty space probabilities of certain Gibbs processes.
吉布斯过程的不一致耦合及其在泊松近似中的应用
讨论了构造给定Papangelou强度的有限Gibbs过程的一种细化和嵌入方法。扩展Hofer-Temmel(电子)方法。[j] .数理学报,24(2019):1-22。应用程序129(2019)3922-3940),我们将使用它来耦合两个具有不同边界条件的有限吉布斯过程。作为一个应用,我们将通过相关减薄建立由某些无限体积吉布斯过程导出的点过程的泊松近似。作为另一个应用,我们将讨论某些吉布斯过程的空空间概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信