Conical Calabi–Yau metrics on toric affine varieties and convex cones

IF 1.3 1区 数学 Q1 MATHEMATICS
Robert J. Berman
{"title":"Conical Calabi–Yau metrics on toric affine varieties and convex cones","authors":"Robert J. Berman","doi":"10.4310/jdg/1696432924","DOIUrl":null,"url":null,"abstract":"It is shown that any affine toric variety $Y$, which is $\\mathbb{Q}$-Gorenstein, admits a conical Ricci flat Kähler metric, which is smooth on the regular locus of $Y$. The corresponding Reeb vector is the unique minimizer of the volume functional on the Reeb cone of $Y$. The case when the vertex point of $Y$ is an isolated singularity was previously shown by Futaki–Ono–Wang. The proof is based on an existence result for the inhomogeneous Monge–Ampère equation in $\\mathbb{R}^m$ with exponential right hand side and with prescribed target given by a proper convex cone, combined with transversal a priori estimates on $Y$.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":"15 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/jdg/1696432924","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

It is shown that any affine toric variety $Y$, which is $\mathbb{Q}$-Gorenstein, admits a conical Ricci flat Kähler metric, which is smooth on the regular locus of $Y$. The corresponding Reeb vector is the unique minimizer of the volume functional on the Reeb cone of $Y$. The case when the vertex point of $Y$ is an isolated singularity was previously shown by Futaki–Ono–Wang. The proof is based on an existence result for the inhomogeneous Monge–Ampère equation in $\mathbb{R}^m$ with exponential right hand side and with prescribed target given by a proper convex cone, combined with transversal a priori estimates on $Y$.
环仿射变异和凸锥上的圆锥Calabi-Yau度量
证明了任意仿射环面变量$Y$ $\mathbb{Q}$-Gorenstein存在一个圆锥Ricci平面Kähler度规,该度规在$Y$的正则轨迹上是光滑的。对应的Reeb向量是$Y$的Reeb锥上的体积函数的唯一最小值。当$Y$的顶点点是孤立奇点时,Futaki-Ono-Wang已经证明了这种情况。该证明是基于$\mathbb{R}^m$中的非齐次monge - ampontre方程的一个存在性结果,该方程的右手边为指数,其给定目标由一个固有凸锥给出,并结合$Y$上的横向先验估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信