On the Mazur-Tate conjecture for prime conductor and Mazur's Eisenstein ideal

IF 1.7 1区 数学 Q1 MATHEMATICS
Emmanuel Lecouturier
{"title":"On the Mazur-Tate conjecture for prime conductor and Mazur's Eisenstein ideal","authors":"Emmanuel Lecouturier","doi":"10.1353/ajm.2023.a907701","DOIUrl":null,"url":null,"abstract":"abstract: In 1995, Ehud de Shalit proved an analogue of a conjecture of Mazur-Tate for the modular Jacobian $J_0(p)$. His main result was valid away from the Eisenstein primes. We complete the work of de Shalit by including the Eisenstein primes, and give some applications such as an elementary combinatorial identity involving discrete logarithms of difference of supersingular $j$-invariants. An important tool is our recent work on the so called ``generalized cuspidal $1$-motive''.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"89 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a907701","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

abstract: In 1995, Ehud de Shalit proved an analogue of a conjecture of Mazur-Tate for the modular Jacobian $J_0(p)$. His main result was valid away from the Eisenstein primes. We complete the work of de Shalit by including the Eisenstein primes, and give some applications such as an elementary combinatorial identity involving discrete logarithms of difference of supersingular $j$-invariants. An important tool is our recent work on the so called ``generalized cuspidal $1$-motive''.
论主导体的马祖尔-塔特猜想和马祖尔的爱森斯坦理想
1995年,Ehud de Shalit证明了模雅可比矩阵$J_0(p)$的Mazur-Tate猜想的一个类似。他的主要结果在不考虑爱森斯坦素数的情况下是有效的。我们通过引入爱森斯坦素数完成了de Shalit的工作,并给出了一些应用,如涉及超奇异$j$不变量差分离散对数的初等组合恒等式。一个重要的工具是我们最近关于所谓的“广义逆$1$动机”的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信