Probabilistic Bayesian approach for delamination localization in GFRP composites using nonlinear guided waves

IF 2.6 4区 工程技术 Q2 MECHANICS
Akhilendra Gangwar, D M Joglekar
{"title":"Probabilistic Bayesian approach for delamination localization in GFRP composites using nonlinear guided waves","authors":"Akhilendra Gangwar, D M Joglekar","doi":"10.1115/1.4063503","DOIUrl":null,"url":null,"abstract":"Abstract Nondestructive evaluation (NDE) techniques that use nonlinear wave–damage interactions have gained significant attention recently due to their improved sensitivity in detecting incipient damage. This study presents the use of finite element (FE) simulation with the experimental investigation to quantify the effects of guided waves’ propagation through multiple delaminations in unidirectional glass fiber-reinforced polymer (GFRP) composites. Further, it utilizes the outcomes of nonlinear interactions between guided waves and delaminations to locate the latter. This is achieved through probabilistic Bayesian updating with a structural reliability approach. Guided waves interacting with delaminations induce nonlinear acoustic signatures that can be quantified by the nonlinearity index (NLI). The study found that the NLI changes with the interrogation frequency, as confirmed by numerical and experimental observations. By using the numerical outcomes obtained from the nonlinear responses, a Bayesian model-based approach with subset simulation is proposed and subsequently used to locate multiple delaminations. The results indicate that both the log-likelihood and log-evidence are key factors in determining the localization phenomenon. The proposed method successfully localizes multiple delaminations and evaluates their number, interlaminar position, width, and type.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":"204 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063503","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Nondestructive evaluation (NDE) techniques that use nonlinear wave–damage interactions have gained significant attention recently due to their improved sensitivity in detecting incipient damage. This study presents the use of finite element (FE) simulation with the experimental investigation to quantify the effects of guided waves’ propagation through multiple delaminations in unidirectional glass fiber-reinforced polymer (GFRP) composites. Further, it utilizes the outcomes of nonlinear interactions between guided waves and delaminations to locate the latter. This is achieved through probabilistic Bayesian updating with a structural reliability approach. Guided waves interacting with delaminations induce nonlinear acoustic signatures that can be quantified by the nonlinearity index (NLI). The study found that the NLI changes with the interrogation frequency, as confirmed by numerical and experimental observations. By using the numerical outcomes obtained from the nonlinear responses, a Bayesian model-based approach with subset simulation is proposed and subsequently used to locate multiple delaminations. The results indicate that both the log-likelihood and log-evidence are key factors in determining the localization phenomenon. The proposed method successfully localizes multiple delaminations and evaluates their number, interlaminar position, width, and type.
基于非线性导波的GFRP复合材料分层定位概率贝叶斯方法
利用非线性波损伤相互作用的无损评估技术由于其在检测早期损伤方面的灵敏度提高,近年来得到了广泛的关注。本研究采用有限元模拟和实验研究相结合的方法,量化了导波在单向玻璃纤维增强聚合物(GFRP)复合材料中多层分层传播的影响。此外,它利用导波和分层之间非线性相互作用的结果来定位后者。这是通过结构可靠性方法的概率贝叶斯更新来实现的。导波与分层相互作用产生非线性声学特征,可以通过非线性指数(NLI)来量化。研究发现,NLI随问话频率的变化而变化,数值和实验结果均证实了这一点。根据非线性响应的数值结果,提出了一种基于贝叶斯模型的子集模拟方法,并将其用于多层分层的定位。结果表明,对数似然和对数证据是决定局部化现象的关键因素。该方法成功地定位了多个分层,并评估了它们的数量、层间位置、宽度和类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
3.80%
发文量
95
审稿时长
5.8 months
期刊介绍: All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信