Yasseen AJ ALMAHDAWI, Mohammed KH ABBAS, Ahmed AL-SAMARI, Nazar ALDABASH, Saadoon Abdul HAFEDH
{"title":"Temperature effect in the energy degradation of photovoltaic power system","authors":"Yasseen AJ ALMAHDAWI, Mohammed KH ABBAS, Ahmed AL-SAMARI, Nazar ALDABASH, Saadoon Abdul HAFEDH","doi":"10.18186/thermal.1370726","DOIUrl":null,"url":null,"abstract":"The modelling of output power for the photovoltaic system is essential for system design and local resource prediction. Accurate photovoltaic power modelling the foremost vital issue is systems efficiency analysis. The temperature plays the main role in the energy degradation of the photovoltaic systems, especially in the host sites. In this paper, experimental and theoreti-cal investigation into the photovoltaic module energy degradation due to temperature effects. This work objectives to investigate the photovoltaic power generated due to the ambient tem-perature effect. The presented results show that the ambient temperature has positive effects on the photovoltaic module energy production during the winter period and negative effects during the summer period. For the proposed photovoltaic system with a capacity of 2.97 kWp the expected theoretical annual energy production by about 554.01 kWh while the annual experiment production was l493.73 kWh. The novelty of the work is to estimate the energy losses due to the ambient temperature effect on the photovoltaic energy production.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1370726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The modelling of output power for the photovoltaic system is essential for system design and local resource prediction. Accurate photovoltaic power modelling the foremost vital issue is systems efficiency analysis. The temperature plays the main role in the energy degradation of the photovoltaic systems, especially in the host sites. In this paper, experimental and theoreti-cal investigation into the photovoltaic module energy degradation due to temperature effects. This work objectives to investigate the photovoltaic power generated due to the ambient tem-perature effect. The presented results show that the ambient temperature has positive effects on the photovoltaic module energy production during the winter period and negative effects during the summer period. For the proposed photovoltaic system with a capacity of 2.97 kWp the expected theoretical annual energy production by about 554.01 kWh while the annual experiment production was l493.73 kWh. The novelty of the work is to estimate the energy losses due to the ambient temperature effect on the photovoltaic energy production.
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.