Parametric evaluation of solar integrated combined partial cooling supercritical CO2 cycle and Organic Rankine Cycle using low global warming potential fluids
Yunis KHAN, Radhey Shyam MISHRA, Roshan RAMAN, Abdul Wahab HASHMI
{"title":"Parametric evaluation of solar integrated combined partial cooling supercritical CO2 cycle and Organic Rankine Cycle using low global warming potential fluids","authors":"Yunis KHAN, Radhey Shyam MISHRA, Roshan RAMAN, Abdul Wahab HASHMI","doi":"10.18186/thermal.1370699","DOIUrl":null,"url":null,"abstract":"In this study, the performance of the organic Rankine cycle combined with the partial cooling supercritical CO2 cycle as the bottoming cycle for recovering the low grade heat powered by a solar power tower was evaluated. Ecofriendly fluids were taken into consideration. To simulate the model under consideration, a computer programme was created in engineering equation solver software. The impacts of solar radiation, concentration ratio, solar incidence angle, CO2 turbine inlet temperature, heat exchanger effectiveness and main compressor inlet tempera-ture were investigated. Based on working fluid R1224yd(Z), it was determined that the com-bined cycle’s thermal efficiency, exergy efficiency, and power output improved from 35.16% to 55.43%, 37.73% to 59.42%, and 188 kW to 298.5 kW, respectively, as solar irradiation raised from 0.4 kW/m2 to 0.95 kW/m2. Lower the solar incidence angle and higher the concentration ratio can enhance the combined system’s performance. Amongst the working fluids that were taken into account, R1224yd(Z) was suggested as having superior performance.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1370699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the performance of the organic Rankine cycle combined with the partial cooling supercritical CO2 cycle as the bottoming cycle for recovering the low grade heat powered by a solar power tower was evaluated. Ecofriendly fluids were taken into consideration. To simulate the model under consideration, a computer programme was created in engineering equation solver software. The impacts of solar radiation, concentration ratio, solar incidence angle, CO2 turbine inlet temperature, heat exchanger effectiveness and main compressor inlet tempera-ture were investigated. Based on working fluid R1224yd(Z), it was determined that the com-bined cycle’s thermal efficiency, exergy efficiency, and power output improved from 35.16% to 55.43%, 37.73% to 59.42%, and 188 kW to 298.5 kW, respectively, as solar irradiation raised from 0.4 kW/m2 to 0.95 kW/m2. Lower the solar incidence angle and higher the concentration ratio can enhance the combined system’s performance. Amongst the working fluids that were taken into account, R1224yd(Z) was suggested as having superior performance.
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.