{"title":"Energy and production analysis of a dairy milk factory: A case of study","authors":"Öznur ÖZTUNA TANER","doi":"10.18186/thermal.1370731","DOIUrl":null,"url":null,"abstract":"This study illustrates a factory’s production efficiency by demonstrating its energy efficiency in the dairy milk industry. Determining the thermal energy to save energy enhances the prof-itability of the factory. The aim of this study is to conduct a thermal energy and production analysis of a dairy milk factory based on annual production. This study intends to make the conclusions more realistic by using production and energy data dependability analysis. The overall power consumption for the thermal and electric energy processes was found to be as 180,520 [W]. The target-specific energy consumption value was computed for Case 1 as 6,352.14 [MJ/t], for Case 2 as 5,898.67 [MJ/t], and for Case 3 as 5,445.21 [MJ/t]. The annual thermal (steam boiler) and electrical energy expenditures were obtained, with 315.87 [kW] of thermal (steam) energy and 80.98 [kW] of electrical energy. The total thermal and electri-cal energy reached 396.85 [kW]. Despite the factory’s expenditure on thermal and electrical energy, the energy efficiency was determined to be as 45.5%. The input energy was obtained to be 374.24 [kW] in Case 1, 356.33 [kW] in Case 2, and 342.08 [kW] in Case 3. The energy efficiency was calculated as 48.2 [%] for Case 1, 50.7 [%] for Case 2, and 52.8 [%] for Case 3. This study, which is expected to inspire future research, is also likely to assist livestock and agriculture in the energy field. The novelty of this study is that optimizing product efficiency and energy consumption in the production of milk and dairy products positively increases the energy efficiency of factories.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1370731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This study illustrates a factory’s production efficiency by demonstrating its energy efficiency in the dairy milk industry. Determining the thermal energy to save energy enhances the prof-itability of the factory. The aim of this study is to conduct a thermal energy and production analysis of a dairy milk factory based on annual production. This study intends to make the conclusions more realistic by using production and energy data dependability analysis. The overall power consumption for the thermal and electric energy processes was found to be as 180,520 [W]. The target-specific energy consumption value was computed for Case 1 as 6,352.14 [MJ/t], for Case 2 as 5,898.67 [MJ/t], and for Case 3 as 5,445.21 [MJ/t]. The annual thermal (steam boiler) and electrical energy expenditures were obtained, with 315.87 [kW] of thermal (steam) energy and 80.98 [kW] of electrical energy. The total thermal and electri-cal energy reached 396.85 [kW]. Despite the factory’s expenditure on thermal and electrical energy, the energy efficiency was determined to be as 45.5%. The input energy was obtained to be 374.24 [kW] in Case 1, 356.33 [kW] in Case 2, and 342.08 [kW] in Case 3. The energy efficiency was calculated as 48.2 [%] for Case 1, 50.7 [%] for Case 2, and 52.8 [%] for Case 3. This study, which is expected to inspire future research, is also likely to assist livestock and agriculture in the energy field. The novelty of this study is that optimizing product efficiency and energy consumption in the production of milk and dairy products positively increases the energy efficiency of factories.
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.