Fair Detour Domination of Graphs

IF 0.6 Q4 MATHEMATICS, APPLIED
J. Vijaya Xavier Parthipan, D. Jeba Ebenezer
{"title":"Fair Detour Domination of Graphs","authors":"J. Vijaya Xavier Parthipan, D. Jeba Ebenezer","doi":"10.1142/s1793830923500830","DOIUrl":null,"url":null,"abstract":"A set [Formula: see text] of a connected graph [Formula: see text] is called a fair detour dominating set if D is a detour dominating set and every two vertices not in D has same number of neighbors in D. The fair detour domination number, [Formula: see text], of G is the minimum cardinality of fair detour dominating sets. A fair detour dominating set of cardinality [Formula: see text] is called a [Formula: see text]-set of G. The fair detour domination number of some well-known graphs are determined. We have shown that, If G is a connected graph with [Formula: see text] and [Formula: see text] then [Formula: see text]. It is shown that for given positive integers [Formula: see text], [Formula: see text], [Formula: see text] such that [Formula: see text] there exists a connected graph G of order [Formula: see text] such that [Formula: see text] and [Formula: see text].","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A set [Formula: see text] of a connected graph [Formula: see text] is called a fair detour dominating set if D is a detour dominating set and every two vertices not in D has same number of neighbors in D. The fair detour domination number, [Formula: see text], of G is the minimum cardinality of fair detour dominating sets. A fair detour dominating set of cardinality [Formula: see text] is called a [Formula: see text]-set of G. The fair detour domination number of some well-known graphs are determined. We have shown that, If G is a connected graph with [Formula: see text] and [Formula: see text] then [Formula: see text]. It is shown that for given positive integers [Formula: see text], [Formula: see text], [Formula: see text] such that [Formula: see text] there exists a connected graph G of order [Formula: see text] such that [Formula: see text] and [Formula: see text].
图的公平迂回支配
如果D是一个绕行支配集,并且不在D中的每两个顶点在D中有相同数量的邻居,则连通图的一个集[公式:见文]称为公平绕行支配集。G的公平绕行支配数[公式:见文]是公平绕行支配集的最小基数。基数[公式:见文]的公平绕行支配集称为g的[公式:见文]-集。确定了一些已知图的公平绕行支配数。我们已经证明,如果G是[公式:见文]和[公式:见文]的连通图,那么[公式:见文]。证明了对于给定的正整数[公式:见文],[公式:见文],[公式:见文],使得[公式:见文]存在一个阶的连通图G,使得[公式:见文]和[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
41.70%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信