CO Laser Absorption Measurements During Syngas Combustion at High Pressure

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sean P. Cooper, Damien Nativel, Olivier E. Mathieu, Mustapha Fikri, Eric Petersen, Christof Schulz
{"title":"CO Laser Absorption Measurements During Syngas Combustion at High Pressure","authors":"Sean P. Cooper, Damien Nativel, Olivier E. Mathieu, Mustapha Fikri, Eric Petersen, Christof Schulz","doi":"10.1115/1.4063414","DOIUrl":null,"url":null,"abstract":"Abstract Syngas is a desirable fuel for combustion in the Allam-Fetvedt cycle, which involves combustion under supercritical-CO2 conditions. While some work has been conducted in collecting ignition delay times (IDT) at the extreme pressures required by these systems, significant model deficiencies remain. Additionally, considerable barriers in terms of nonideal gas dynamic effects have been shown for these experiments in shock tubes. Further investigation into the fundamental combustion kinetics of H2/CO/CO2 mixtures is required. Time-resolved speciation measurements for target species have been shown to better aid in improving the understanding of underlying chemical kinetics than global ignition delay time measurements. Therefore, laser absorption measurements of CO were measured behind reflected shock waves during combustion of syngas at 5 and 10 bar and temperatures between 1080 and 2100 K. The mixtures investigated utilized H2-to-CO ratios of 1:1 and 1:4, respectively, each at stoichiometric conditions, allowing for discussions of the effect of initial fuel composition. A ratio of fuel to CO2 of 1:2 was also utilized to represent commercially available syngas. The mixtures were diluted in helium and argon (20% He, 76.5% Ar) to minimize thermal effects and to expedite CO thermal relaxation during the experiment. The resulting CO time histories were then compared to modern chemical kinetics mechanisms, and disagreement is seen for this system, which is assumed to be fairly well known. This study elucidates particular chemistry that needs improvement in moving toward a better understanding of syngas combustion at elevated pressures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063414","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Syngas is a desirable fuel for combustion in the Allam-Fetvedt cycle, which involves combustion under supercritical-CO2 conditions. While some work has been conducted in collecting ignition delay times (IDT) at the extreme pressures required by these systems, significant model deficiencies remain. Additionally, considerable barriers in terms of nonideal gas dynamic effects have been shown for these experiments in shock tubes. Further investigation into the fundamental combustion kinetics of H2/CO/CO2 mixtures is required. Time-resolved speciation measurements for target species have been shown to better aid in improving the understanding of underlying chemical kinetics than global ignition delay time measurements. Therefore, laser absorption measurements of CO were measured behind reflected shock waves during combustion of syngas at 5 and 10 bar and temperatures between 1080 and 2100 K. The mixtures investigated utilized H2-to-CO ratios of 1:1 and 1:4, respectively, each at stoichiometric conditions, allowing for discussions of the effect of initial fuel composition. A ratio of fuel to CO2 of 1:2 was also utilized to represent commercially available syngas. The mixtures were diluted in helium and argon (20% He, 76.5% Ar) to minimize thermal effects and to expedite CO thermal relaxation during the experiment. The resulting CO time histories were then compared to modern chemical kinetics mechanisms, and disagreement is seen for this system, which is assumed to be fairly well known. This study elucidates particular chemistry that needs improvement in moving toward a better understanding of syngas combustion at elevated pressures.
合成气高压燃烧过程中CO激光吸收测量
合成气是在Allam-Fetvedt循环中燃烧的理想燃料,该循环涉及超临界co2条件下的燃烧。虽然在收集这些系统所需的极端压力下的点火延迟时间(IDT)方面已经进行了一些工作,但仍然存在重大的模型缺陷。此外,在激波管中进行的这些实验表明,在非理想气体动力学效应方面存在相当大的障碍。需要进一步研究H2/CO/CO2混合物的基本燃烧动力学。对目标物种进行时间分辨的物种形成测量已被证明比全局点火延迟时间测量更有助于提高对潜在化学动力学的理解。因此,一氧化碳的激光吸收测量是在合成气燃烧时,在5和10 bar,温度在1080和2100 K之间的反射激波后测量的。所研究的混合物分别在化学计量条件下使用1:1和1:4的h2 - co比,允许讨论初始燃料成分的影响。燃料与二氧化碳的比例为1:2,也用于代表商业上可获得的合成气。在氦和氩(20% He, 76.5% Ar)中稀释混合物,以最小化热效应并加速实验过程中的CO热松弛。然后将得到的CO时间历史与现代化学动力学机制进行比较,发现该系统存在分歧,该系统被认为是相当众所周知的。这项研究阐明了需要改进的特殊化学,以便更好地理解合成气在高压下的燃烧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信