{"title":"Counterexamples to the Hasse Principle among the twists of the Klein quartic","authors":"Elisa Lorenzo García , Michaël Vullers","doi":"10.1016/j.indag.2023.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we inspect from closer the local and global points of the twists of the Klein quartic. For the local ones we use geometric arguments, while for the global ones we strongly use the modular interpretation of the twists. The main result is providing families with (conjecturally infinitely many) twists of the Klein quartic that are counterexamples to the Hasse Principle.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723000848/pdfft?md5=03e46a5dbb56004e38e7926d976cb7c3&pid=1-s2.0-S0019357723000848-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we inspect from closer the local and global points of the twists of the Klein quartic. For the local ones we use geometric arguments, while for the global ones we strongly use the modular interpretation of the twists. The main result is providing families with (conjecturally infinitely many) twists of the Klein quartic that are counterexamples to the Hasse Principle.