Huinian Zhang, Suping Jia, Ning Li, Xiaolin Shi, Ziyuan Li
{"title":"Facile graphene quantum dot-anchoring strategy synthesis of single-atom iron-nitrogen electrocatalyst with enhanced ORR performance","authors":"Huinian Zhang, Suping Jia, Ning Li, Xiaolin Shi, Ziyuan Li","doi":"10.1142/s1793604723400313","DOIUrl":null,"url":null,"abstract":"Single-atom catalysts (SACs), especially atomically dispersed Fe–N[Formula: see text]–C based SACs, hold great promise to replace Pt-based electrocatalysts for oxygen-reduction reaction (ORR). Currently, synthesizing high-activity ORR electrocatalysts with atomically dispersed Fe–N[Formula: see text] site structures is still challenging due to their high surface free energy, which leads to easy migration and serious aggregation. Herein, we have designed a general graphene quantum dots (GQDs)-anchoring strategy to synthesize a single-iron-atom electrocatalyst (Fe–N-GQDs/PC) applied to ORR through calcining of N-GQDs-Fe[Formula: see text] modified porous carbon (PC) and melamine. Experiments demonstrate the N-GQDs consist of abundant oxygenated groups, which could lead to complexing metal ions and thus facilitating the formation of SACs. Furthermore, the Fe–N-GQDs/PC electrocatalyst exhibits outstanding electrocatalytic ORR activity in 0.1 M KOH media with half-wave potentials of 0.84 versus 0.85 V for Pt/C. This strategy has opened up new feasible ideas to produce SACs for electrochemical energy devices.","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"73 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Materials Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793604723400313","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-atom catalysts (SACs), especially atomically dispersed Fe–N[Formula: see text]–C based SACs, hold great promise to replace Pt-based electrocatalysts for oxygen-reduction reaction (ORR). Currently, synthesizing high-activity ORR electrocatalysts with atomically dispersed Fe–N[Formula: see text] site structures is still challenging due to their high surface free energy, which leads to easy migration and serious aggregation. Herein, we have designed a general graphene quantum dots (GQDs)-anchoring strategy to synthesize a single-iron-atom electrocatalyst (Fe–N-GQDs/PC) applied to ORR through calcining of N-GQDs-Fe[Formula: see text] modified porous carbon (PC) and melamine. Experiments demonstrate the N-GQDs consist of abundant oxygenated groups, which could lead to complexing metal ions and thus facilitating the formation of SACs. Furthermore, the Fe–N-GQDs/PC electrocatalyst exhibits outstanding electrocatalytic ORR activity in 0.1 M KOH media with half-wave potentials of 0.84 versus 0.85 V for Pt/C. This strategy has opened up new feasible ideas to produce SACs for electrochemical energy devices.
期刊介绍:
Functional Materials Letters is an international peer-reviewed scientific journal for original contributions to research on the synthesis, behavior and characterization of functional materials. The journal seeks to provide a rapid forum for the communication of novel research of high quality and with an interdisciplinary flavor. The journal is an ideal forum for communication amongst materials scientists and engineers, chemists and chemical engineers, and physicists in the dynamic fields associated with functional materials.
Functional materials are designed to make use of their natural or engineered functionalities to respond to changes in electrical and magnetic fields, physical and chemical environment, etc. These design considerations are fundamentally different to those relevant for structural materials and are the focus of this journal. Functional materials play an increasingly important role in the development of the field of materials science and engineering.
The scope of the journal covers theoretical and experimental studies of functional materials, characterization and new applications-related research on functional materials in macro-, micro- and nano-scale science and engineering. Among the topics covered are ferroelectric, multiferroic, ferromagnetic, magneto-optical, optoelectric, thermoelectric, energy conversion and energy storage, sustainable energy and shape memory materials.