Alexander Murray, Peter Ireland, Nick Green, Michael Wickins, Richard Hood, Janendra Telisinghe
{"title":"The Manufacturing and Experimental Validation of a Nickel Superalloy Double-Wall, Effusion Test Specimen","authors":"Alexander Murray, Peter Ireland, Nick Green, Michael Wickins, Richard Hood, Janendra Telisinghe","doi":"10.1115/1.4063448","DOIUrl":null,"url":null,"abstract":"Abstract With the hot stage of a modern aeroengine operating with combustor firing temperatures well beyond the melting point of the nickel superalloys from which the turbine blades are manufactured, developments to the methods of cooling of these components are required to advance performance. Double-wall, effusion systems exhibit a quasi-transpiration like cooling effect with recent work demonstrating their exceptional cooling performance. Such systems are characterized by two walls, one with impingement holes and the other with film cooling holes, that are mechanically and thermally connected via pedestals. However, manufacturing such geometries from single-crystal nickel superalloys remains a significant barrier to entry into service. This paper presents a method of manufacturing double-wall effusion specimens from a nickel superalloy commonly used in modern commercial high-pressure turbine components. The method maintains the mechanical integrity associated with nickel superalloys. Details of the method are presented alongside X-ray and GOM laser scan data of a flat-plate test article that demonstrates the success of the manufacturing process. Aerothermal testing of the specimen in a bespoke recirculating wind-tunnel facility was undertaken in which the overall cooling effectiveness of the system is obtained. The results reaffirm the excellent cooling performance of double-wall, effusion systems and further validate the manufacturing methodology as a method by which to realize enhanced cooling effectiveness in service.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063448","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With the hot stage of a modern aeroengine operating with combustor firing temperatures well beyond the melting point of the nickel superalloys from which the turbine blades are manufactured, developments to the methods of cooling of these components are required to advance performance. Double-wall, effusion systems exhibit a quasi-transpiration like cooling effect with recent work demonstrating their exceptional cooling performance. Such systems are characterized by two walls, one with impingement holes and the other with film cooling holes, that are mechanically and thermally connected via pedestals. However, manufacturing such geometries from single-crystal nickel superalloys remains a significant barrier to entry into service. This paper presents a method of manufacturing double-wall effusion specimens from a nickel superalloy commonly used in modern commercial high-pressure turbine components. The method maintains the mechanical integrity associated with nickel superalloys. Details of the method are presented alongside X-ray and GOM laser scan data of a flat-plate test article that demonstrates the success of the manufacturing process. Aerothermal testing of the specimen in a bespoke recirculating wind-tunnel facility was undertaken in which the overall cooling effectiveness of the system is obtained. The results reaffirm the excellent cooling performance of double-wall, effusion systems and further validate the manufacturing methodology as a method by which to realize enhanced cooling effectiveness in service.
期刊介绍:
The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.