Hamilton cycles in Generalized Mycielski Graphs

IF 0.6 Q4 MATHEMATICS, APPLIED
L. Panneerselvam, S. Ganesamurthy, A. Muthusamy
{"title":"Hamilton cycles in Generalized Mycielski Graphs","authors":"L. Panneerselvam, S. Ganesamurthy, A. Muthusamy","doi":"10.1142/s179383092350088x","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] denote the generalized Mycielski graph of [Formula: see text]. In this paper, it is proved that for [Formula: see text], if [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles, then [Formula: see text] has [Formula: see text] Hamilton cycles which are pairwise edge-disjoint. Further, it is shown that if [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles with [Formula: see text] for [Formula: see text] and [Formula: see text] for [Formula: see text], then [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles. Finally it is shown that [Formula: see text] is hamiltonian even when [Formula: see text] is non-hamiltonian with a specified [Formula: see text]-factor. Consequently, the Mycielski graph of Flower Snark graph [Formula: see text], for all odd [Formula: see text], is Hamiltonian.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"268 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s179383092350088x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] denote the generalized Mycielski graph of [Formula: see text]. In this paper, it is proved that for [Formula: see text], if [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles, then [Formula: see text] has [Formula: see text] Hamilton cycles which are pairwise edge-disjoint. Further, it is shown that if [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles with [Formula: see text] for [Formula: see text] and [Formula: see text] for [Formula: see text], then [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles. Finally it is shown that [Formula: see text] is hamiltonian even when [Formula: see text] is non-hamiltonian with a specified [Formula: see text]-factor. Consequently, the Mycielski graph of Flower Snark graph [Formula: see text], for all odd [Formula: see text], is Hamiltonian.
广义Mycielski图中的Hamilton环
设[公式:见文]表示[公式:见文]的广义Mycielski图。本文证明了对于[公式:见文],若[公式:见文]存在[公式:见文]对边不相交的汉密尔顿环,则[公式:见文]存在[公式:见文]对边不相交的汉密尔顿环。此外,结果表明,如果[公式:看到文本][公式:看到文本]成对edge-disjoint汉密尔顿周期与[公式:看到文本][公式:看到文本]和[公式:看到文本][公式:看到文本),然后(公式:看到文本)(公式:看到文本)成对edge-disjoint汉密尔顿周期。最后证明,即使[公式:见文]是具有特定[公式:见文]因子的非哈密顿函数,[公式:见文]也是哈密顿函数。因此,Flower - Snark图的Mycielski图(公式:见文)对于所有奇数(公式:见文)都是汉密尔顿图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
41.70%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信