{"title":"Effects of non-stationary wind velocity models on buffeting performance of closed-box girder suspension bridges","authors":"Rui Zhou, Yinan Lin, Peng Lu, Yongxin Yang, Jinbo Zhu","doi":"10.1186/s42774-023-00158-w","DOIUrl":null,"url":null,"abstract":"Abstract Non-stationary characteristic in nature wind has a great effect on buffeting performance of long-span bridges. The influence of key parameters in non-stationary wind velocity models on nonlinear buffeting responses of a super long-span suspension bridge was investigated in this paper. Firstly, four non-stationary wind velocity models are established by combing the time-varying average wind velocity with an exponential function and the fluctuating wind velocity with four modulation functions, respectively. These non-stationary wind velocity models have obvious non-stationary characteristics and then are validated by the classical power spectrum densities. Finally, three displacement responses of the bridge deck under four different independent variables of β in the exponential function and four modulation functions were compared, respectively. Results show that the turbulence intensities using two non-uniform modulation functions (NMF) are larger than those using uniform modulation functions (uMF). Moreover, the root mean square (RMS) values of three displacement responses increase with the decrease of β . Besides, the RMS values of three displacement under two NMFs are larger than those under two uMFs, and their RMS values under the second uMF are the smallest.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"3 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Aerodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42774-023-00158-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Non-stationary characteristic in nature wind has a great effect on buffeting performance of long-span bridges. The influence of key parameters in non-stationary wind velocity models on nonlinear buffeting responses of a super long-span suspension bridge was investigated in this paper. Firstly, four non-stationary wind velocity models are established by combing the time-varying average wind velocity with an exponential function and the fluctuating wind velocity with four modulation functions, respectively. These non-stationary wind velocity models have obvious non-stationary characteristics and then are validated by the classical power spectrum densities. Finally, three displacement responses of the bridge deck under four different independent variables of β in the exponential function and four modulation functions were compared, respectively. Results show that the turbulence intensities using two non-uniform modulation functions (NMF) are larger than those using uniform modulation functions (uMF). Moreover, the root mean square (RMS) values of three displacement responses increase with the decrease of β . Besides, the RMS values of three displacement under two NMFs are larger than those under two uMFs, and their RMS values under the second uMF are the smallest.