Structural evolution and characterization of organic-rich shale from macroscopic to microscopic resolution: The significance of tectonic activity

IF 9 1区 地球科学 Q1 ENERGY & FUELS
Jian Gao, Xiaoshi Li, Guoxi Cheng, Hua Luo, Hongjian Zhu
{"title":"Structural evolution and characterization of organic-rich shale from macroscopic to microscopic resolution: The significance of tectonic activity","authors":"Jian Gao, Xiaoshi Li, Guoxi Cheng, Hua Luo, Hongjian Zhu","doi":"10.46690/ager.2023.11.03","DOIUrl":null,"url":null,"abstract":"Shale gas exploration and development have taken significant strides in the relatively straightforward intra-basin stability zone and intra-basin weak deformation zone of marine shale in the Sichuan Basin, South China. In addition, the extra-basin strong tectonic modification zones have been actively explored. However, the results have been limited, which reveals the complexity of shale gas formation and preservation conditions in the context of multi-scale geological processes. These tectonic geological conditions have a significant impact on the shale gas content, while it has been difficult to figure out how tectonic deformation modifies reservoir structure and what specific mechanism causes shale gas content anomalies. Based on subjecting geologic samples to combined high-temperature and high-pressure experiments, this study summarizes the tectonic constraint mechanism of shale petrophysical structure evolution and its impact on shale gas storage, reveals the intrinsic connection and mechanism of shale pore-fracture and organic matter, inorganic mineral particle structure evolution and tectonic stress, and identifies the remodeling mechanism of the shale reservoir physical property change. The findings contribute to the theory of shale deformation and gas accumulation, as well as offer a scientific foundation for the exploration of marine shale gas in the complex tectonic zones outside the Sichuan Basin. Document Type: Perspective Cited as: Gao, J., Li, X., Cheng, G., Luo, H., Zhu, H. Structural evolution and characterization of organic-rich shale from macroscopic to microscopic resolution: The significance of tectonic activity. Advances in Geo-Energy Research, 2023, 10(2): 84-90. https://doi.org/10.46690/ager.2023.11.03","PeriodicalId":36335,"journal":{"name":"Advances in Geo-Energy Research","volume":"215 1","pages":"0"},"PeriodicalIF":9.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geo-Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46690/ager.2023.11.03","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

Shale gas exploration and development have taken significant strides in the relatively straightforward intra-basin stability zone and intra-basin weak deformation zone of marine shale in the Sichuan Basin, South China. In addition, the extra-basin strong tectonic modification zones have been actively explored. However, the results have been limited, which reveals the complexity of shale gas formation and preservation conditions in the context of multi-scale geological processes. These tectonic geological conditions have a significant impact on the shale gas content, while it has been difficult to figure out how tectonic deformation modifies reservoir structure and what specific mechanism causes shale gas content anomalies. Based on subjecting geologic samples to combined high-temperature and high-pressure experiments, this study summarizes the tectonic constraint mechanism of shale petrophysical structure evolution and its impact on shale gas storage, reveals the intrinsic connection and mechanism of shale pore-fracture and organic matter, inorganic mineral particle structure evolution and tectonic stress, and identifies the remodeling mechanism of the shale reservoir physical property change. The findings contribute to the theory of shale deformation and gas accumulation, as well as offer a scientific foundation for the exploration of marine shale gas in the complex tectonic zones outside the Sichuan Basin. Document Type: Perspective Cited as: Gao, J., Li, X., Cheng, G., Luo, H., Zhu, H. Structural evolution and characterization of organic-rich shale from macroscopic to microscopic resolution: The significance of tectonic activity. Advances in Geo-Energy Research, 2023, 10(2): 84-90. https://doi.org/10.46690/ager.2023.11.03
富有机质页岩从宏观到微观的构造演化与表征:构造活动的意义
在四川盆地相对简单的海相页岩盆地内稳定带和盆地内弱变形带,页岩气勘探开发取得了重大进展。此外,积极探索盆地外强构造改造带。然而,研究成果有限,揭示了页岩气形成和保存条件在多尺度地质作用背景下的复杂性。这些构造地质条件对页岩气含量有显著影响,但构造变形如何改变储层结构,以及造成页岩气含量异常的具体机制一直是研究的难点。在对地质样品进行高温高压联合实验的基础上,总结了页岩岩石物性结构演化的构造约束机制及其对页岩气成藏的影响,揭示了页岩孔隙-裂缝与有机质、无机矿物颗粒结构演化和构造应力的内在联系与机制,识别了页岩储层物性变化的重塑机制。研究成果为页岩变形成藏理论提供了理论依据,为四川盆地外复杂构造带海相页岩气勘探提供了科学依据。文献类型:观点引自:高军,李翔,程刚,罗华,朱华。富有机质页岩的结构演化与表征——从宏观到微观解析:构造活动的意义。地球能源研究进展,2023,10(2):84-90。https://doi.org/10.46690/ager.2023.11.03
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geo-Energy Research
Advances in Geo-Energy Research natural geo-energy (oil, gas, coal geothermal, and gas hydrate)-Geotechnical Engineering and Engineering Geology
CiteScore
12.30
自引率
8.50%
发文量
63
审稿时长
2~3 weeks
期刊介绍: Advances in Geo-Energy Research is an interdisciplinary and international periodical committed to fostering interaction and multidisciplinary collaboration among scientific communities worldwide, spanning both industry and academia. Our journal serves as a platform for researchers actively engaged in the diverse fields of geo-energy systems, providing an academic medium for the exchange of knowledge and ideas. Join us in advancing the frontiers of geo-energy research through collaboration and shared expertise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信