{"title":"Interpolation operators for parabolic problems","authors":"Rob Stevenson, Johannes Storn","doi":"10.1007/s00211-023-01373-9","DOIUrl":null,"url":null,"abstract":"Abstract We introduce interpolation operators with approximation and stability properties suited for parabolic problems in primal and mixed formulations. We derive localized error estimates for tensor product meshes (occurring in classical time-marching schemes) as well as locally in space-time refined meshes.","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00211-023-01373-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We introduce interpolation operators with approximation and stability properties suited for parabolic problems in primal and mixed formulations. We derive localized error estimates for tensor product meshes (occurring in classical time-marching schemes) as well as locally in space-time refined meshes.
期刊介绍:
Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers:
1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis)
2. Optimization and Control Theory
3. Mathematical Modeling
4. The mathematical aspects of Scientific Computing