{"title":"On the rational approximation to Thue–Morse rational numbers","authors":"Yann Bugeaud, Guo-Niu Han","doi":"10.4171/rsmup/133","DOIUrl":null,"url":null,"abstract":"Let $b \\ge 2$ and $\\ell \\ge 1$ be integers. We establish that there is an absolute real number $K$ such that all the partial quotients of the rational number $$ \\prod_{h = 0}^\\ell \\, (1 - b^{-2^h}), $$ of denominator $b^{2^{\\ell+1} - 1}$, do not exceed $\\exp(K (\\log b)^2 \\sqrt{\\ell} 2^{\\ell/2})$.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let $b \ge 2$ and $\ell \ge 1$ be integers. We establish that there is an absolute real number $K$ such that all the partial quotients of the rational number $$ \prod_{h = 0}^\ell \, (1 - b^{-2^h}), $$ of denominator $b^{2^{\ell+1} - 1}$, do not exceed $\exp(K (\log b)^2 \sqrt{\ell} 2^{\ell/2})$.