{"title":"On a projection least squares estimator for jump diffusion processes","authors":"Hélène Halconruy, Nicolas Marie","doi":"10.1007/s10463-023-00881-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with a projection least squares estimator of the drift function of a jump diffusion process <i>X</i> computed from multiple independent copies of <i>X</i> observed on [0, <i>T</i>]. Risk bounds are established on this estimator and on an associated adaptive estimator. Finally, some numerical experiments are provided.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-023-00881-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with a projection least squares estimator of the drift function of a jump diffusion process X computed from multiple independent copies of X observed on [0, T]. Risk bounds are established on this estimator and on an associated adaptive estimator. Finally, some numerical experiments are provided.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.