{"title":"A Filippov approximation theorem for strengthened one-sided Lipschitz differential inclusions","authors":"Robert Baier, Elza Farkhi","doi":"10.1007/s10589-023-00517-9","DOIUrl":null,"url":null,"abstract":"Abstract We consider differential inclusions with strengthened one-sided Lipschitz (SOSL) right-hand sides. The class of SOSL multivalued maps is wider than the class of Lipschitz ones and a subclass of the class of one-sided Lipschitz maps. We prove a Filippov approximation theorem for the solutions of such differential inclusions with perturbations in the right-hand side, both of the set of the velocities (outer perturbations) and of the state (inner perturbations). The obtained estimate of the distance between the approximate and exact solution extends the known Filippov estimate for Lipschitz maps to SOSL ones and improves the order of approximation with respect to the inner perturbation known for one-sided Lipschitz (OSL) right-hand sides from $$\\frac{1}{2}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:math> to 1.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10589-023-00517-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We consider differential inclusions with strengthened one-sided Lipschitz (SOSL) right-hand sides. The class of SOSL multivalued maps is wider than the class of Lipschitz ones and a subclass of the class of one-sided Lipschitz maps. We prove a Filippov approximation theorem for the solutions of such differential inclusions with perturbations in the right-hand side, both of the set of the velocities (outer perturbations) and of the state (inner perturbations). The obtained estimate of the distance between the approximate and exact solution extends the known Filippov estimate for Lipschitz maps to SOSL ones and improves the order of approximation with respect to the inner perturbation known for one-sided Lipschitz (OSL) right-hand sides from $$\frac{1}{2}$$ 12 to 1.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.