{"title":"Well-Dispersed Graphene Enhanced Lithium Complex Grease Toward High-Efficient Lubrication","authors":"Kaiyue Lin, Zhuang Zhao, Yuting Li, Zihan Zeng, Xiaofeng Wei, Xiaoqiang Fan, Minhao Zhu","doi":"10.1186/s10033-023-00959-6","DOIUrl":null,"url":null,"abstract":"Abstract Graphene as a lubricating additive holds great potential for industrial lubrication. However, its poor dispersity and compatibility with base oils and grease hinder maximizing performance. Here, the influence of graphene dispersion on the thickening effect and lubrication function is considered. A well-dispersed lubricant additive was obtained via trihexyl tetradecyl phosphonium bis(2-ethylhexyl) phosphate modified graphene ([P 66614 ][DEHP]-G). Then lithium complex grease was prepared by saponification with 12-OH stearic acid, sebacic acid, and lithium hydroxide, using polyalphaolefin (PAO20) as base oil and the modified-graphene as lubricating additive, with the original graphene as a comparison. The physicochemical properties and lubrication performance of the as-prepared greases were evaluated in detail. The results show that the as-prepared greases have high dropping point and colloidal stability. Furthermore, modified-graphene lithium complex grease offered the best friction reduction and anti-wear abilities, manifesting the reduction of friction coefficient and wear volume up to 18.84% and 67.34%, respectively. With base oil overflow and afflux, well-dispersed [P 66614 ][DEHP]-G was readily adsorbed to the worn surfaces, resulting in the formation of a continuous and dense graphene deposition film. The synergy of deposited graphene-film, spilled oil, and adhesive grease greatly improves the lubrication function of grease. This research paves the way for modulating high-performance lithium complex grease to reduce the friction and wear of movable machinery.","PeriodicalId":10115,"journal":{"name":"Chinese Journal of Mechanical Engineering","volume":"21 2","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s10033-023-00959-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Graphene as a lubricating additive holds great potential for industrial lubrication. However, its poor dispersity and compatibility with base oils and grease hinder maximizing performance. Here, the influence of graphene dispersion on the thickening effect and lubrication function is considered. A well-dispersed lubricant additive was obtained via trihexyl tetradecyl phosphonium bis(2-ethylhexyl) phosphate modified graphene ([P 66614 ][DEHP]-G). Then lithium complex grease was prepared by saponification with 12-OH stearic acid, sebacic acid, and lithium hydroxide, using polyalphaolefin (PAO20) as base oil and the modified-graphene as lubricating additive, with the original graphene as a comparison. The physicochemical properties and lubrication performance of the as-prepared greases were evaluated in detail. The results show that the as-prepared greases have high dropping point and colloidal stability. Furthermore, modified-graphene lithium complex grease offered the best friction reduction and anti-wear abilities, manifesting the reduction of friction coefficient and wear volume up to 18.84% and 67.34%, respectively. With base oil overflow and afflux, well-dispersed [P 66614 ][DEHP]-G was readily adsorbed to the worn surfaces, resulting in the formation of a continuous and dense graphene deposition film. The synergy of deposited graphene-film, spilled oil, and adhesive grease greatly improves the lubrication function of grease. This research paves the way for modulating high-performance lithium complex grease to reduce the friction and wear of movable machinery.
期刊介绍:
Chinese Journal of Mechanical Engineering (CJME) was launched in 1988. It is a peer-reviewed journal under the govern of China Association for Science and Technology (CAST) and sponsored by Chinese Mechanical Engineering Society (CMES).
The publishing scopes of CJME follow with:
Mechanism and Robotics, including but not limited to
-- Innovative Mechanism Design
-- Mechanical Transmission
-- Robot Structure Design and Control
-- Applications for Robotics (e.g., Industrial Robot, Medical Robot, Service Robot…)
-- Tri-Co Robotics
Intelligent Manufacturing Technology, including but not limited to
-- Innovative Industrial Design
-- Intelligent Machining Process
-- Artificial Intelligence
-- Micro- and Nano-manufacturing
-- Material Increasing Manufacturing
-- Intelligent Monitoring Technology
-- Machine Fault Diagnostics and Prognostics
Advanced Transportation Equipment, including but not limited to
-- New Energy Vehicle Technology
-- Unmanned Vehicle
-- Advanced Rail Transportation
-- Intelligent Transport System
Ocean Engineering Equipment, including but not limited to
--Equipment for Deep-sea Exploration
-- Autonomous Underwater Vehicle
Smart Material, including but not limited to
--Special Metal Functional Materials
--Advanced Composite Materials
--Material Forming Technology.