The Hahn sequence space generated by the Cesàro mean of order m

IF 0.5 Q3 MATHEMATICS
Medine Yeşilkayagil Savaşcı, Feyzi Başar
{"title":"The Hahn sequence space generated by the Cesàro mean of order m","authors":"Medine Yeşilkayagil Savaşcı,&nbsp;Feyzi Başar","doi":"10.1007/s44146-023-00098-3","DOIUrl":null,"url":null,"abstract":"<div><p>Hahn (Math Phys 32:3–88, 1922) defined the sequence space <i>h</i>. The main purpose of this study is to introduce the new Hahn sequence space <span>\\(h(C_{m})\\)</span> as the domain of Cesàro mean of order <i>m</i> and give some topological properties of the space <span>\\(h(C_{m})\\)</span>. Moreover, we determine the alpha-, beta- and gamma-duals of the space <span>\\(h(C_{m})\\)</span> and characterize the classes <span>\\((\\ell _1:h)\\)</span>, <span>\\((h:\\ell _p)\\)</span>, <span>\\((h(C_m):V_{1})\\)</span> and <span>\\((V_{2}:h(C_{m}))\\)</span> of matrix transformations, where <span>\\(1&lt;p&lt;\\infty \\)</span>, <span>\\(V_{1}\\in \\{\\ell _{\\infty },c,c_{0},\\ell _p\\}\\)</span> and <span>\\(V_{2}\\)</span> is any given sequence space. Finally, we compute the norm of the operators belonging to <span>\\({\\mathcal {B}}(\\ell _1,h(C_m))\\)</span> and determine the Hausdorff measure of noncompactness of the operators in <span>\\({\\mathcal {B}}(\\ell _1,h(C_m))\\)</span>.\n</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"90 1-2","pages":"53 - 72"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00098-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Hahn (Math Phys 32:3–88, 1922) defined the sequence space h. The main purpose of this study is to introduce the new Hahn sequence space \(h(C_{m})\) as the domain of Cesàro mean of order m and give some topological properties of the space \(h(C_{m})\). Moreover, we determine the alpha-, beta- and gamma-duals of the space \(h(C_{m})\) and characterize the classes \((\ell _1:h)\), \((h:\ell _p)\), \((h(C_m):V_{1})\) and \((V_{2}:h(C_{m}))\) of matrix transformations, where \(1<p<\infty \), \(V_{1}\in \{\ell _{\infty },c,c_{0},\ell _p\}\) and \(V_{2}\) is any given sequence space. Finally, we compute the norm of the operators belonging to \({\mathcal {B}}(\ell _1,h(C_m))\) and determine the Hausdorff measure of noncompactness of the operators in \({\mathcal {B}}(\ell _1,h(C_m))\).

由 m 阶 Cesàro 平均值生成的哈恩序列空间
本研究的主要目的是引入新的哈恩序列空间 \(h(C_{m})\)作为阶数为 m 的 Cesàro 均值域,并给出空间 \(h(C_{m})\)的一些拓扑性质。此外,我们确定了空间 \(h(C_{m}))的 alpha-, beta- 和 gamma-二元,并描述了类\((\ell _1:h)\), \((h:\ell _p)\), \((h(C_m):V_{1})\)和\((V_{2}:其中,\(1<p<\infty \)、\(V_{1}\in \{ell _{infty },c,c_{0},\ell _p\}\) 和\(V_{2}\) 是任意给定的序列空间。最后,我们计算属于 \({\mathcal {B}}(\ell _1,h(C_m))\) 的算子的规范,并确定 \({\mathcal {B}}(\ell _1,h(C_m))\) 中算子的非紧凑性的豪斯多夫度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信