{"title":"Dedicated Cone-Beam Breast CT: Reproducibility of Volumetric Glandular Fraction with Advanced Image Reconstruction Methods","authors":"Srinivasan Vedantham, Hsin Wu Tseng, Zhiyang Fu, Hsiao-Hui Sherry Chow","doi":"10.3390/tomography9060160","DOIUrl":null,"url":null,"abstract":"Dedicated cone-beam breast computed tomography (CBBCT) is an emerging modality and provides fully three-dimensional (3D) images of the uncompressed breast at an isotropic voxel resolution. In an effort to translate this modality to breast cancer screening, advanced image reconstruction methods are being pursued. Since radiographic breast density is an established risk factor for breast cancer and CBBCT provides volumetric data, this study investigates the reproducibility of the volumetric glandular fraction (VGF), defined as the proportion of fibroglandular tissue volume relative to the total breast volume excluding the skin. Four image reconstruction methods were investigated: the analytical Feldkamp–Davis–Kress (FDK), a compressed sensing-based fast, regularized, iterative statistical technique (FRIST), a fully supervised deep learning approach using a multi-scale residual dense network (MS-RDN), and a self-supervised approach based on Noise-to-Noise (N2N) learning. Projection datasets from 106 women who participated in a prior clinical trial were reconstructed using each of these algorithms at a fixed isotropic voxel size of (0.273 mm3). Each reconstructed breast volume was segmented into skin, adipose, and fibroglandular tissues, and the VGF was computed. The VGF did not differ among the four reconstruction methods (p = 0.167), and none of the three advanced image reconstruction algorithms differed from the standard FDK reconstruction (p > 0.862). Advanced reconstruction algorithms developed for low-dose CBBCT reproduce the VGF to provide quantitative breast density, which can be used for risk estimation.","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"12 4","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/tomography9060160","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Dedicated cone-beam breast computed tomography (CBBCT) is an emerging modality and provides fully three-dimensional (3D) images of the uncompressed breast at an isotropic voxel resolution. In an effort to translate this modality to breast cancer screening, advanced image reconstruction methods are being pursued. Since radiographic breast density is an established risk factor for breast cancer and CBBCT provides volumetric data, this study investigates the reproducibility of the volumetric glandular fraction (VGF), defined as the proportion of fibroglandular tissue volume relative to the total breast volume excluding the skin. Four image reconstruction methods were investigated: the analytical Feldkamp–Davis–Kress (FDK), a compressed sensing-based fast, regularized, iterative statistical technique (FRIST), a fully supervised deep learning approach using a multi-scale residual dense network (MS-RDN), and a self-supervised approach based on Noise-to-Noise (N2N) learning. Projection datasets from 106 women who participated in a prior clinical trial were reconstructed using each of these algorithms at a fixed isotropic voxel size of (0.273 mm3). Each reconstructed breast volume was segmented into skin, adipose, and fibroglandular tissues, and the VGF was computed. The VGF did not differ among the four reconstruction methods (p = 0.167), and none of the three advanced image reconstruction algorithms differed from the standard FDK reconstruction (p > 0.862). Advanced reconstruction algorithms developed for low-dose CBBCT reproduce the VGF to provide quantitative breast density, which can be used for risk estimation.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.