{"title":"Short-Term Predictions of Evaporation Using SoilCover at the Near-Surface of a Mine Waste Pile following Heavy Rainfall Events","authors":"Louis Katele Kabwe, Ward Gordon Wilson","doi":"10.3390/geotechnics3040064","DOIUrl":null,"url":null,"abstract":"Accurate measurements and predictions of near-surface soil drying and evaporation following heavy rainfall events are often needed for research in agriculture and hydrology. However, such measurements and predictions at mine waste pile and tailing settings are limited. The prediction of evaporation at mine waste piles is essential for many problems in geotechnical engineering, including the design of soil cover systems for the long-term closure of hazardous waste sites, and thus mitigates, for example, the generation of acid mine drainage (AMD) and metal leaching. AMD is one of mining’s most serious threats to the environment. This study investigated the short-term (8 days) and medium-term (27 days) drying rates and evaporative fluxes at the surface and near-surface of the Deilmann South waste-rock (DSWR) pile at the Key Lake uranium mine, northern Saskatchewan, using the gravimetric (GV) method and SoilCover (SC) model, respectively, during and following heavy rainfall events for the environment. The SC simulation results showed that during the weather-controlled stage (Stage I) of the first 5-day period of rainfall events, while the surface was wet, the potential evaporation (PE) was equal to the actual evaporation (AE) (i.e., AE/PE = 1). As the surface became drier on Day 6, the cumulative PE began to separate from the cumulative AE and the surface’s drying rate rapidly diverged from those at the deeper depths. This occurrence signaled the onset of the soil profile property-controlled stage (Stage II). As the drying continued, the surface became desiccated and the slow-rate drying stage (Stage III) was established from Day 7 onward. The SC-simulated AE results were compared to those measured using the eddy covariance (EC) method for the same test period at the DSWR pile in a different study. The comparison showed that the two methods yielded similar AE results, with 18% relative errors. The results of this study provided the opportunity to validate the SC model using actual data gathered under field conditions and to ascertain its ability to accurately predict the PE and AE at the surfaces of mine waste piles.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"56 3","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geotechnics3040064","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate measurements and predictions of near-surface soil drying and evaporation following heavy rainfall events are often needed for research in agriculture and hydrology. However, such measurements and predictions at mine waste pile and tailing settings are limited. The prediction of evaporation at mine waste piles is essential for many problems in geotechnical engineering, including the design of soil cover systems for the long-term closure of hazardous waste sites, and thus mitigates, for example, the generation of acid mine drainage (AMD) and metal leaching. AMD is one of mining’s most serious threats to the environment. This study investigated the short-term (8 days) and medium-term (27 days) drying rates and evaporative fluxes at the surface and near-surface of the Deilmann South waste-rock (DSWR) pile at the Key Lake uranium mine, northern Saskatchewan, using the gravimetric (GV) method and SoilCover (SC) model, respectively, during and following heavy rainfall events for the environment. The SC simulation results showed that during the weather-controlled stage (Stage I) of the first 5-day period of rainfall events, while the surface was wet, the potential evaporation (PE) was equal to the actual evaporation (AE) (i.e., AE/PE = 1). As the surface became drier on Day 6, the cumulative PE began to separate from the cumulative AE and the surface’s drying rate rapidly diverged from those at the deeper depths. This occurrence signaled the onset of the soil profile property-controlled stage (Stage II). As the drying continued, the surface became desiccated and the slow-rate drying stage (Stage III) was established from Day 7 onward. The SC-simulated AE results were compared to those measured using the eddy covariance (EC) method for the same test period at the DSWR pile in a different study. The comparison showed that the two methods yielded similar AE results, with 18% relative errors. The results of this study provided the opportunity to validate the SC model using actual data gathered under field conditions and to ascertain its ability to accurately predict the PE and AE at the surfaces of mine waste piles.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.