{"title":"A New Approach to Handle Curved Meshes in the Hybrid High-Order Method","authors":"Liam Yemm","doi":"10.1007/s10208-023-09615-w","DOIUrl":null,"url":null,"abstract":"Abstract We present here a novel approach to handling curved meshes in polytopal methods within the framework of hybrid high-order methods. The hybrid high-order method is a modern numerical scheme for the approximation of elliptic PDEs. An extension to curved meshes allows for the strong enforcement of boundary conditions on curved domains and for the capture of curved geometries that appear internally in the domain e.g. discontinuities in a diffusion coefficient. The method makes use of non-polynomial functions on the curved faces and does not require any mappings between reference elements/faces. Such an approach does not require the faces to be polynomial and has a strict upper bound on the number of degrees of freedom on a curved face for a given polynomial degree. Moreover, this approach of enriching the space of unknowns on the curved faces with non-polynomial functions should extend naturally to other polytopal methods. We show the method to be stable and consistent on curved meshes and derive optimal error estimates in $$L^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> and energy norms. We present numerical examples of the method on a domain with curved boundary and for a diffusion problem such that the diffusion tensor is discontinuous along a curved arc.","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"97 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10208-023-09615-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We present here a novel approach to handling curved meshes in polytopal methods within the framework of hybrid high-order methods. The hybrid high-order method is a modern numerical scheme for the approximation of elliptic PDEs. An extension to curved meshes allows for the strong enforcement of boundary conditions on curved domains and for the capture of curved geometries that appear internally in the domain e.g. discontinuities in a diffusion coefficient. The method makes use of non-polynomial functions on the curved faces and does not require any mappings between reference elements/faces. Such an approach does not require the faces to be polynomial and has a strict upper bound on the number of degrees of freedom on a curved face for a given polynomial degree. Moreover, this approach of enriching the space of unknowns on the curved faces with non-polynomial functions should extend naturally to other polytopal methods. We show the method to be stable and consistent on curved meshes and derive optimal error estimates in $$L^2$$ L2 and energy norms. We present numerical examples of the method on a domain with curved boundary and for a diffusion problem such that the diffusion tensor is discontinuous along a curved arc.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.