Numerical Simulation of an Indirect Solar Dryer Equipped with Thermal Conduction Enhancer Augmented Phase Change Materials (PCMs) for Banana Drying

IF 0.7 Q4 THERMODYNAMICS
Ahmed Sabah Thaker, Fawziea M. Hussien, Johain J. Faraj
{"title":"Numerical Simulation of an Indirect Solar Dryer Equipped with Thermal Conduction Enhancer Augmented Phase Change Materials (PCMs) for Banana Drying","authors":"Ahmed Sabah Thaker, Fawziea M. Hussien, Johain J. Faraj","doi":"10.18280/ijht.410506","DOIUrl":null,"url":null,"abstract":"An innovative indirect solar dryer, designed for banana dehydration, was developed and assessed, utilizing the Ansys software for simulation. The system comprises a vacuum tube water heater and a drying chamber, the latter of which incorporates phase-change materials (PCMs), thus enhancing the drying performance. A fan positioned within the chamber synergizes with the PCMs, effectively abbreviating the drying time. Computational simulations were executed to refine the system design and operational parameters. A sorption isotherm was constructed to delineate the optimal moisture content and water activity, fundamental parameters for efficient drying. The integrated solar collector facilitates the transformation of solar energy into heat, while the drying chamber, accommodating two baskets of produce, optimizes the heat distribution. Our system demon strated the capacity to generate high drying temperatures, especially efficient for items exhibiting lower moisture content than bananas. The system achieved a predicted maximum efficiency of 67.40%, operating optimally within a temperature range of 60-65℃. Experimental results were congruent with computational simulations, reinforcing the efficacy o f the drying chamber. This study introduces a novel, sustainable method for efficient fruit dehydration, spotlighting its potential applicability beyond bananas to other produce.","PeriodicalId":13995,"journal":{"name":"International Journal of Heat and Technology","volume":"62 2","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ijht.410506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

An innovative indirect solar dryer, designed for banana dehydration, was developed and assessed, utilizing the Ansys software for simulation. The system comprises a vacuum tube water heater and a drying chamber, the latter of which incorporates phase-change materials (PCMs), thus enhancing the drying performance. A fan positioned within the chamber synergizes with the PCMs, effectively abbreviating the drying time. Computational simulations were executed to refine the system design and operational parameters. A sorption isotherm was constructed to delineate the optimal moisture content and water activity, fundamental parameters for efficient drying. The integrated solar collector facilitates the transformation of solar energy into heat, while the drying chamber, accommodating two baskets of produce, optimizes the heat distribution. Our system demon strated the capacity to generate high drying temperatures, especially efficient for items exhibiting lower moisture content than bananas. The system achieved a predicted maximum efficiency of 67.40%, operating optimally within a temperature range of 60-65℃. Experimental results were congruent with computational simulations, reinforcing the efficacy o f the drying chamber. This study introduces a novel, sustainable method for efficient fruit dehydration, spotlighting its potential applicability beyond bananas to other produce.
热传导增强相变材料(PCMs)用于香蕉干燥的间接太阳能干燥机的数值模拟
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
22.20%
发文量
144
期刊介绍: The IJHT covers all kinds of subjects related to heat and technology, including but not limited to turbulence, combustion, cryogenics, porous media, multiphase flow, radiative transfer, heat and mass transfer, micro- and nanoscale systems, and thermophysical property measurement. The editorial board encourages the authors from all countries to submit papers on the relevant issues, especially those aimed at the practitioner as much as the academic. The papers should further our understanding of the said subjects, and make a significant original contribution to knowledge. The IJHT welcomes original research papers, technical notes and review articles on the following disciplines: Heat transfer Fluid dynamics Thermodynamics Turbulence Combustion Cryogenics Porous media Multiphase flow Radiative transfer Heat and mass transfer Micro- and nanoscale systems Thermophysical property measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信