MODEL GABUNGAN (ANSAMBEL) SARIMA DAN JARINGAN SARAF TIRUAN UNTUK PERAMALAN BEBAN LISTRIK

Mega Silfiani
{"title":"MODEL GABUNGAN (ANSAMBEL) SARIMA DAN JARINGAN SARAF TIRUAN UNTUK PERAMALAN BEBAN LISTRIK","authors":"Mega Silfiani","doi":"10.30598/variancevol5iss2page193-200","DOIUrl":null,"url":null,"abstract":"This study aims to investigate the efficacy of employing artificial neural networks in conjunction with a seasonal autoregressive integrated moving average (SARIMA) ensemble for forecasting electrical load. The SARIMA ensemble comprises members generated by varying autoregressive orders or moving averages. Subsequently, these SARIMA ensemble members are integrated using artificial neural networks. The datasets encompass monthly electrical load data pertaining to households, businesses, industries, and the public, spanning from January 2016 to December 2020. The findings demonstrate that across various categories, SARIMA ensemble-based artificial neural networks demonstrated superior predictive performance compared to alternative models. Future research endeavors should focus on exploring diverse methodologies for both creating and amalgamating ensemble members.","PeriodicalId":485700,"journal":{"name":"Variance","volume":"7 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Variance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30598/variancevol5iss2page193-200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate the efficacy of employing artificial neural networks in conjunction with a seasonal autoregressive integrated moving average (SARIMA) ensemble for forecasting electrical load. The SARIMA ensemble comprises members generated by varying autoregressive orders or moving averages. Subsequently, these SARIMA ensemble members are integrated using artificial neural networks. The datasets encompass monthly electrical load data pertaining to households, businesses, industries, and the public, spanning from January 2016 to December 2020. The findings demonstrate that across various categories, SARIMA ensemble-based artificial neural networks demonstrated superior predictive performance compared to alternative models. Future research endeavors should focus on exploring diverse methodologies for both creating and amalgamating ensemble members.
合成传导体和神经网络的集合模型
本研究旨在探讨人工神经网络结合季节性自回归综合移动平均(SARIMA)集合预测电力负荷的有效性。SARIMA集合包括由不同的自回归顺序或移动平均产生的成员。随后,使用人工神经网络对这些SARIMA集合成员进行整合。这些数据集涵盖了2016年1月至2020年12月期间家庭、企业、工业和公众的月度电力负荷数据。研究结果表明,与其他模型相比,在各种类别中,基于SARIMA集成的人工神经网络表现出优越的预测性能。未来的研究工作应该集中在探索不同的方法来创建和合并集成成员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信