Implementasi Kontrol Nutrisi Dan pH Pada Hidroponik Cerdas Berbasis Arduino Dan JST

Muhammad Naufal Zul Hazmi, Raden Sumiharto
{"title":"Implementasi Kontrol Nutrisi Dan pH Pada Hidroponik Cerdas Berbasis Arduino Dan JST","authors":"Muhammad Naufal Zul Hazmi, Raden Sumiharto","doi":"10.22146/ijeis.86268","DOIUrl":null,"url":null,"abstract":"This research aims to implement an automated nutrition and pH control system in NFT hydroponic system based on ANN control. NFT hydroponics involves growing plants without soil as a medium. In hydroponics, it is essential to continuously control the nutrient levels and pH of the solution. However, manual control performed by humans continuously is inefficient and time-consuming.The ANN method is used to model and predict the output actuators based on sensor input in the NFT hydroponic system. This ANN architecture consists of several layers with the following number of neurons: input layer 2, first hidden layer 128, second hidden layer 64, and output layer 3, representing multipleoutputs. The ANN training process involves classifying the data samples using various hyperparameters.The research findings demonstrate the ANN classification model successfully applied to control pH and nutrient levels through the predicted output actuators. The pump actuators are activated according to input received from the TDS and pH sensors. Through the variation of hyperparameters, the classification model with a test_size: 0.3, epoch: 400, batch_size: 32, and random_state: 42 provided the best performance in prediction. This ANN classification model achieved the best results in model testing with an accuracy rate: 97.96% from 49 data.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":"121 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijeis.86268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to implement an automated nutrition and pH control system in NFT hydroponic system based on ANN control. NFT hydroponics involves growing plants without soil as a medium. In hydroponics, it is essential to continuously control the nutrient levels and pH of the solution. However, manual control performed by humans continuously is inefficient and time-consuming.The ANN method is used to model and predict the output actuators based on sensor input in the NFT hydroponic system. This ANN architecture consists of several layers with the following number of neurons: input layer 2, first hidden layer 128, second hidden layer 64, and output layer 3, representing multipleoutputs. The ANN training process involves classifying the data samples using various hyperparameters.The research findings demonstrate the ANN classification model successfully applied to control pH and nutrient levels through the predicted output actuators. The pump actuators are activated according to input received from the TDS and pH sensors. Through the variation of hyperparameters, the classification model with a test_size: 0.3, epoch: 400, batch_size: 32, and random_state: 42 provided the best performance in prediction. This ANN classification model achieved the best results in model testing with an accuracy rate: 97.96% from 49 data.
基于Arduino和JST的智能水培法的营养控制和pH值实现
本研究旨在实现基于人工神经网络控制的NFT水培系统营养和pH的自动化控制系统。NFT水培法涉及在没有土壤作为介质的情况下种植植物。在水培中,持续控制溶液的营养水平和pH值是至关重要的。然而,由人类连续进行的手动控制是低效且耗时的。利用神经网络方法对NFT水培系统中基于传感器输入的输出执行器进行建模和预测。这个ANN架构由几个层组成,神经元数量如下:输入层2,第一隐藏层128,第二隐藏层64,输出层3,代表多输出。人工神经网络的训练过程包括使用各种超参数对数据样本进行分类。研究结果表明,人工神经网络分类模型通过预测输出执行器成功地应用于pH和营养水平的控制。泵执行器根据从TDS和pH传感器接收的输入被激活。通过超参数的变化,test_size: 0.3, epoch: 400, batch_size: 32, random_state: 42的分类模型预测性能最好。该ANN分类模型在模型测试中取得了最好的结果,在49个数据中准确率达到97.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信