{"title":"EFFECTIVENESS OF 7S GLOBULIN AGAINST BOTRYTIS CINEREA CAUSING GRAY MOLD IN STRAWBERRY","authors":"A OSMAN, M SITOHY, FS MOHSEN, E ABBAS","doi":"10.54910/sabrao2023.55.5.21","DOIUrl":null,"url":null,"abstract":"Gray mold caused by Botrytis cinerea is the most harmful postharvest disease responsible for the degradation of strawberries. The presented study targeted the preparation of 7S globulin from pea seeds to serve as an antifungal agent against B. cinerea in vitro and on the post-harvest strawberry to extend the fruits’ shelf life. The 7S globulin isolation from pea seeds and characterization employed various methods, such as SDS-PAGE, FTIR, and pH solubility curve. The molecular technique also helped confirm the identity of the causative microorganism of the gray mold disease in strawberries. Utilizing rRNA gene sequencing identified a fungal pathogen that causes gray mold as B. cinerea. The 7S globulin showed three protein bands corresponding to α/ (83 KDa), α (68 KDa), and β (60 KDa) subunits. The isoelectric point was notable at pH 5.8. The essential and non-essential amino acids occurred around 24.92% and 54.04%, respectively. The 7S globulin inhibited the mycelial growth of B. cinerea in a concentration-dependent manner. The Scanning Electron Microscope (SEM) of B. cinerea subjected to 7S globulin showed swelling of both the fungal hyphae and conidia, significantly affected by the pea 7S-globulin treatment, entirely destabilizing and deforming their shape at 0.4 g/L. The 7S-globulin exposure maintained the fruit quality and stopped the strawberry’s natural deterioration. Results further authenticated that 7S globulin (isolated from pea seeds) revealed effective antifungal action against B. cinerea mycelial development via a membrane-targeted mechanism. The 7S globulin affects hyphal morphology, compromises plasma membrane integrity, and prevents post-harvest gray mold on strawberry fruits.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sabrao Journal of Breeding and Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54910/sabrao2023.55.5.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Gray mold caused by Botrytis cinerea is the most harmful postharvest disease responsible for the degradation of strawberries. The presented study targeted the preparation of 7S globulin from pea seeds to serve as an antifungal agent against B. cinerea in vitro and on the post-harvest strawberry to extend the fruits’ shelf life. The 7S globulin isolation from pea seeds and characterization employed various methods, such as SDS-PAGE, FTIR, and pH solubility curve. The molecular technique also helped confirm the identity of the causative microorganism of the gray mold disease in strawberries. Utilizing rRNA gene sequencing identified a fungal pathogen that causes gray mold as B. cinerea. The 7S globulin showed three protein bands corresponding to α/ (83 KDa), α (68 KDa), and β (60 KDa) subunits. The isoelectric point was notable at pH 5.8. The essential and non-essential amino acids occurred around 24.92% and 54.04%, respectively. The 7S globulin inhibited the mycelial growth of B. cinerea in a concentration-dependent manner. The Scanning Electron Microscope (SEM) of B. cinerea subjected to 7S globulin showed swelling of both the fungal hyphae and conidia, significantly affected by the pea 7S-globulin treatment, entirely destabilizing and deforming their shape at 0.4 g/L. The 7S-globulin exposure maintained the fruit quality and stopped the strawberry’s natural deterioration. Results further authenticated that 7S globulin (isolated from pea seeds) revealed effective antifungal action against B. cinerea mycelial development via a membrane-targeted mechanism. The 7S globulin affects hyphal morphology, compromises plasma membrane integrity, and prevents post-harvest gray mold on strawberry fruits.
期刊介绍:
The SABRAO Journal of Breeding and Genetics is an international journal of plant breeding and genetics research and was first published in 1969. It is the official publication of the Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO).
Its objectives are to: promote the international exchange of research information on plant breeding and genetics, by describing new research findings, or ideas of a basic or practical nature; and be a medium for the exchange of ideas and news regarding members of the Society.
The Journal gives priority to articles that are of direct relevance to plant breeders and with emphasis on the Asian region. Invited for publication are research articles, short communications, methods, reviews, commentaries, and opinion articles. Scientific contributions are refereed and edited to international standards.
The journal publishes articles for SABRAO members mainly. The Journal preferred strongly that at least one author should be a current member of the Society. Non-members may also publish in the journal.