A SUBGEOMETRIC CONVERGENCE FORMULA FOR TOTAL-VARIATION ERROR OF THE LEVEL-INCREMENT TRUNCATION APPROXIMATION OF M/G/1-TYPE MARKOV CHAINS

Q4 Decision Sciences
Katsuhisa Ouchi, Hiroyuki Masuyama
{"title":"A SUBGEOMETRIC CONVERGENCE FORMULA FOR TOTAL-VARIATION ERROR OF THE LEVEL-INCREMENT TRUNCATION APPROXIMATION OF M/G/1-TYPE MARKOV CHAINS","authors":"Katsuhisa Ouchi, Hiroyuki Masuyama","doi":"10.15807/jorsj.66.243","DOIUrl":null,"url":null,"abstract":"This paper considers the level-increment (LI) truncation approximation of M/G/1-type Markov chains. The LI truncation approximation is usually used to implement Ramaswami's recursion for the stationary distribution in M/G/1-type Markov chains. The main result of this paper is a subgeometric convergence formula for the total-variation distance between the stationary distribution and its LI truncation approximation.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/jorsj.66.243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

This paper considers the level-increment (LI) truncation approximation of M/G/1-type Markov chains. The LI truncation approximation is usually used to implement Ramaswami's recursion for the stationary distribution in M/G/1-type Markov chains. The main result of this paper is a subgeometric convergence formula for the total-variation distance between the stationary distribution and its LI truncation approximation.
m / g /1型马尔可夫链水平递增截断近似的总变差误差的次几何收敛公式
研究M/G/1型马尔可夫链的水平递增截断近似。对于M/G/1型马尔可夫链中的平稳分布,通常采用LI截断近似来实现Ramaswami递归。本文的主要结果是平稳分布与其LI截断近似之间的总变差距离的一个亚几何收敛公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Operations Research Society of Japan
Journal of the Operations Research Society of Japan 管理科学-运筹学与管理科学
CiteScore
0.70
自引率
0.00%
发文量
12
审稿时长
12 months
期刊介绍: The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信