Dewi Pusparani Sinambela, Husni Naparin, Muhammad Zulfadhilah, Nurul Hidayah
{"title":"Implementasi Algoritma Decision Tree dan Random Forest dalam Prediksi Perdarahan Pascasalin","authors":"Dewi Pusparani Sinambela, Husni Naparin, Muhammad Zulfadhilah, Nurul Hidayah","doi":"10.60083/jidt.v5i3.393","DOIUrl":null,"url":null,"abstract":"Perdarahan Postpartum (PPP) merupakan salah satu kegawatdaruatan pada persalinan yang dapat menyebabkan kematian di negara maju dan negara berkembang. Salah satu pencegahan terjadiya PPP dengan melakukan prediksi pada ibu bersalin dengan mempertimbangkan faktor faktor risiko menggunakan pendekatan model Machine Learning (ML). Algoritma Random Forest (RF) dan Decision Tree (DT) merupakan algoritma yang digunakan dalam prediksi kejadian PPP. Tujuan dari penelitian ini adalah mengembangkan kinerja dari Algoritma RF dan Algoritma RF untuk mengklasifikasi kejadian PPP. Hasil analisis Berdasarkan hasil analisis univariat yang ditunjukkan pada tabel 1 didapatkan ibu yang memiliki paritas > 4 sebanyak 102 orang (20,4%), jarak kehamilan ibu yang ≤ 2 tahun sebanyak 310 orang (62%), ibu pasca bersalin yang mengalami anemia sebanyak 124 orang (24,8%), ibu yang melahirkan bayi makrosomia sebanyak 60 orang (12 %), ibu yang mengalami komplikasi persalinan sebanyak 229 orang (45,8 %),ibu yang mengalami kehamilan ganda sebanyak 16 orang (3,2%), umur ibu yang berisiko sebanyak 132 orang (26,4%). Perbandingan tingkat akurasi algoritma RF mencapai 0,830 dibandingkan dengan algoritma DT sebesar 0.820, AUC RF 0.74. Hal ini menunjukan bahwa Algoritma RF mempunya perfomance metric lebih naik dibandingkan dengan algoritma DT. Algoritma Random Forest dapat dianggap sebagai salah satu algoritma representatif ML, yang dikenal karena kemudahannya dan efektivitasnya","PeriodicalId":33488,"journal":{"name":"JTIT Jurnal Teknologi Informasi dan Terapan","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JTIT Jurnal Teknologi Informasi dan Terapan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60083/jidt.v5i3.393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Perdarahan Postpartum (PPP) merupakan salah satu kegawatdaruatan pada persalinan yang dapat menyebabkan kematian di negara maju dan negara berkembang. Salah satu pencegahan terjadiya PPP dengan melakukan prediksi pada ibu bersalin dengan mempertimbangkan faktor faktor risiko menggunakan pendekatan model Machine Learning (ML). Algoritma Random Forest (RF) dan Decision Tree (DT) merupakan algoritma yang digunakan dalam prediksi kejadian PPP. Tujuan dari penelitian ini adalah mengembangkan kinerja dari Algoritma RF dan Algoritma RF untuk mengklasifikasi kejadian PPP. Hasil analisis Berdasarkan hasil analisis univariat yang ditunjukkan pada tabel 1 didapatkan ibu yang memiliki paritas > 4 sebanyak 102 orang (20,4%), jarak kehamilan ibu yang ≤ 2 tahun sebanyak 310 orang (62%), ibu pasca bersalin yang mengalami anemia sebanyak 124 orang (24,8%), ibu yang melahirkan bayi makrosomia sebanyak 60 orang (12 %), ibu yang mengalami komplikasi persalinan sebanyak 229 orang (45,8 %),ibu yang mengalami kehamilan ganda sebanyak 16 orang (3,2%), umur ibu yang berisiko sebanyak 132 orang (26,4%). Perbandingan tingkat akurasi algoritma RF mencapai 0,830 dibandingkan dengan algoritma DT sebesar 0.820, AUC RF 0.74. Hal ini menunjukan bahwa Algoritma RF mempunya perfomance metric lebih naik dibandingkan dengan algoritma DT. Algoritma Random Forest dapat dianggap sebagai salah satu algoritma representatif ML, yang dikenal karena kemudahannya dan efektivitasnya