{"title":"Deep encoder/decoder dual-path neural network for speech separation in noisy reverberation environments","authors":"Chunxi Wang, Maoshen Jia, Xinfeng Zhang","doi":"10.1186/s13636-023-00307-5","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, the speaker-independent, single-channel speech separation problem has made significant progress with the development of deep neural networks (DNNs). However, separating the speech of each interested speaker from an environment that includes the speech of other speakers, background noise, and room reverberation remains challenging. In order to solve this problem, a speech separation method for a noisy reverberation environment is proposed. Firstly, the time-domain end-to-end network structure of a deep encoder/decoder dual-path neural network is introduced in this paper for speech separation. Secondly, to make the model not fall into local optimum during training, a loss function stretched optimal scale-invariant signal-to-noise ratio (SOSISNR) was proposed, inspired by the scale-invariant signal-to-noise ratio (SISNR). At the same time, in order to make the training more appropriate to the human auditory system, the joint loss function is extended based on short-time objective intelligibility (STOI). Thirdly, an alignment operation is proposed to reduce the influence of time delay caused by reverberation on separation performance. Combining the above methods, the subjective and objective evaluation metrics show that this study has better separation performance in complex sound field environments compared to the baseline methods.","PeriodicalId":49309,"journal":{"name":"Journal on Audio Speech and Music Processing","volume":"47 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal on Audio Speech and Music Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13636-023-00307-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In recent years, the speaker-independent, single-channel speech separation problem has made significant progress with the development of deep neural networks (DNNs). However, separating the speech of each interested speaker from an environment that includes the speech of other speakers, background noise, and room reverberation remains challenging. In order to solve this problem, a speech separation method for a noisy reverberation environment is proposed. Firstly, the time-domain end-to-end network structure of a deep encoder/decoder dual-path neural network is introduced in this paper for speech separation. Secondly, to make the model not fall into local optimum during training, a loss function stretched optimal scale-invariant signal-to-noise ratio (SOSISNR) was proposed, inspired by the scale-invariant signal-to-noise ratio (SISNR). At the same time, in order to make the training more appropriate to the human auditory system, the joint loss function is extended based on short-time objective intelligibility (STOI). Thirdly, an alignment operation is proposed to reduce the influence of time delay caused by reverberation on separation performance. Combining the above methods, the subjective and objective evaluation metrics show that this study has better separation performance in complex sound field environments compared to the baseline methods.
期刊介绍:
The aim of “EURASIP Journal on Audio, Speech, and Music Processing” is to bring together researchers, scientists and engineers working on the theory and applications of the processing of various audio signals, with a specific focus on speech and music. EURASIP Journal on Audio, Speech, and Music Processing will be an interdisciplinary journal for the dissemination of all basic and applied aspects of speech communication and audio processes.