Deterministic differential games in infinite horizon involving continuous and impulse controls

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Brahim El Asri, Hafid Lalioui
{"title":"Deterministic differential games in infinite horizon involving continuous and impulse controls","authors":"Brahim El Asri, Hafid Lalioui","doi":"10.1080/23307706.2023.2255594","DOIUrl":null,"url":null,"abstract":"We consider a two-player zero-sum deterministic differential game where each player uses both continuous and impulse controls in infinite-time horizon. We assume that the impulses supposed to be of general term and the costs depend on the state of the system. We use the dynamic programming principle and viscosity solutions approach to show existence and uniqueness of a solution for the Hamilton-Jacobi-Bellman-Isaacs (HJBI) partial differential equations (PDEs) of the game. We prove under Isaacs condition that the upper and lower value functions coincide.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23307706.2023.2255594","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

We consider a two-player zero-sum deterministic differential game where each player uses both continuous and impulse controls in infinite-time horizon. We assume that the impulses supposed to be of general term and the costs depend on the state of the system. We use the dynamic programming principle and viscosity solutions approach to show existence and uniqueness of a solution for the Hamilton-Jacobi-Bellman-Isaacs (HJBI) partial differential equations (PDEs) of the game. We prove under Isaacs condition that the upper and lower value functions coincide.
无限视界中包含连续和脉冲控制的确定性微分对策
摘要研究了一类新的二人零和确定性微分对策,其中每个参与者在无限视界上同时使用连续和脉冲控制。我们假设脉冲的形式和代价分别取决于非线性函数和系统的状态。我们使用Bellman的动态规划原理(DPP)和粘性解方法来证明,对于这类对策,相关的Hamilton-Jacobi-Bellman-Isaacs (HJBI)偏微分方程(PDEs)解的存在性和唯一性。然后,在Isaacs条件下,我们推导出上下值函数重合,并给出了该对策的计算过程和数值检验。关键词:确定性微分对策,无限水平连续控制,脉冲控制,动态规划原理,密度解,艾萨克条件,分类:49K3549L2549N7090C3993C20致谢感谢审稿人的认真阅读,以及他们的有益意见和建议,使本文有了很大的改进。披露声明作者未报告潜在的利益冲突。本文第二作者的研究得到了摩洛哥国家科学技术研究中心CNRST的资助[资助号17 UIZ 19]。作者简介brahim El Asri,摩洛哥Agadir Ibn Zohr大学国家应用科学学院应用数学正教授。他的研究工作包括确定性和随机情况下的最优控制和微分对策,切换问题和倒向随机微分方程。Hafid Lalioui,分别于2016年和2018年在摩洛哥阿加迪尔的Ibn Zohr大学获得数学和应用学士学位和金融工程硕士学位。他是伊本·佐尔大学国家应用科学学院应用数学博士研究员。他的研究课题涉及确定性微分博弈,包括无限和有限时间范围内的冲动控制。他还对随机控制和强化学习在数学金融中具有挑战性的主题中的应用感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信