Javier Montano, Fernando Ramı́rez-Zavaleta, E. S. Tututi, Everardo Urquiza-Trejo
{"title":"The top quark chromomagnetic dipole moment in the SM from the 4-body vertex function","authors":"Javier Montano, Fernando Ramı́rez-Zavaleta, E. S. Tututi, Everardo Urquiza-Trejo","doi":"10.1088/1361-6471/acfc26","DOIUrl":null,"url":null,"abstract":"Abstract A new proposal to compute the anomalous chromomagnetic dipole moment of the top quark, <?CDATA ${\\hat{\\mu }}_{t}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>ˆ</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> </mml:math> , in the Standard Model is presented. On the basis of the five-dimensional effective Lagrangian operator that characterizes the quantum-loop induced chromodipolar vertices <?CDATA ${gt}\\bar{t}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"italic\">gt</mml:mi> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:math> and <?CDATA ${ggt}\\bar{t}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"italic\">ggt</mml:mi> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:math> , the <?CDATA ${\\hat{\\mu }}_{t}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>ˆ</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> </mml:math> anomaly is derived via radiative correction at the 1-loop level from the non-Abelian 4-body vertex function <?CDATA ${ggt}\\bar{t}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"italic\">ggt</mml:mi> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:math> . We evaluate <?CDATA ${\\hat{\\mu }}_{t}(s)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>ˆ</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> as a function of the energy scale s = ± E 2 , for E = [10, 1000] GeV, taking into account the running of the quark masses and alpha strong through the <?CDATA $\\overline{\\mathrm{MS}}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>MS</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy=\"true\">¯</mml:mo> </mml:mrow> </mml:mover> </mml:math> scheme. In particular, we find that at the typical energy scale E = m Z for high-energy physics, similarly to <?CDATA ${\\alpha }_{s}({m}_{Z}^{2})$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>s</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>m</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> , <?CDATA $\\alpha ({m}_{Z}^{2})$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>α</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>m</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> and <?CDATA ${s}_{W}({m}_{Z}^{2})$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi>s</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>W</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>m</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> , the spacelike evaluation yields <?CDATA ${\\hat{\\mu }}_{t}(-{m}_{Z}^{2})$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>ˆ</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mo>−</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>m</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> = −0.025 + 0.00384 i and the timelike <?CDATA ${\\hat{\\mu }}_{t}({m}_{Z}^{2})$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>ˆ</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>m</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> = −0.0318 − 0.0106 i . This Re <?CDATA ${\\hat{\\mu }}_{t}(-{m}_{Z}^{2})$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>ˆ</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mo>−</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>m</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> = −0.025 from <?CDATA ${ggt}\\bar{t}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"italic\">ggt</mml:mi> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:math> is even closer to the experimental central value <?CDATA ${\\hat{\\mu }}_{t}^{\\mathrm{Exp}}\\,=\\,$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msubsup> <mml:mrow> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>ˆ</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Exp</mml:mi> </mml:mrow> </mml:msubsup> <mml:mspace width=\"0.25em\" /> <mml:mo>=</mml:mo> <mml:mspace width=\"0.25em\" /> </mml:math> −0.024, than that coming from the known 3-body vertex function <?CDATA ${gt}\\bar{t}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"italic\">gt</mml:mi> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:math> , −0.0224. Once again, the Im <?CDATA ${\\hat{\\mu }}_{t}(-{m}_{Z}^{2})$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>ˆ</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mo>−</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>m</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> part is due to the contribution of virtual charged currents, just like in the <?CDATA ${gt}\\bar{t}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"italic\">gt</mml:mi> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:math> case. We can infer that the spacelike prediction is the favored one.","PeriodicalId":16770,"journal":{"name":"Journal of Physics G","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6471/acfc26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A new proposal to compute the anomalous chromomagnetic dipole moment of the top quark, μˆt , in the Standard Model is presented. On the basis of the five-dimensional effective Lagrangian operator that characterizes the quantum-loop induced chromodipolar vertices gtt¯ and ggtt¯ , the μˆt anomaly is derived via radiative correction at the 1-loop level from the non-Abelian 4-body vertex function ggtt¯ . We evaluate μˆt(s) as a function of the energy scale s = ± E 2 , for E = [10, 1000] GeV, taking into account the running of the quark masses and alpha strong through the MS¯ scheme. In particular, we find that at the typical energy scale E = m Z for high-energy physics, similarly to αs(mZ2) , α(mZ2) and sW(mZ2) , the spacelike evaluation yields μˆt(−mZ2) = −0.025 + 0.00384 i and the timelike μˆt(mZ2) = −0.0318 − 0.0106 i . This Re μˆt(−mZ2) = −0.025 from ggtt¯ is even closer to the experimental central value μˆtExp= −0.024, than that coming from the known 3-body vertex function gtt¯ , −0.0224. Once again, the Im μˆt(−mZ2) part is due to the contribution of virtual charged currents, just like in the gtt¯ case. We can infer that the spacelike prediction is the favored one.
摘要提出了一种计算标准模型中顶夸克反常色磁偶极矩的新方法。基于表征量子环诱导色极顶点gt t¯和ggt t¯的五维有效拉格朗日算子,通过非阿贝尔四体顶点函数ggt t¯在1环水平上的辐射校正,推导出μ t异常。对于E = [10,1000] GeV,考虑到夸克质量和强α通过MS¯方案的运行情况,我们将μ t (s)作为能量标度s =±e2的函数进行评估。特别地,我们发现在高能物理的典型能量尺度E = m Z,类似于α s (m Z 2), α (m Z 2)和s W (m Z 2),类空间评价得到μ μ t (- m Z 2) = - 0.025 + 0.00384 i,类时间评价得到μ μ t (m Z 2) = - 0.0318−0.0106 i。由ggt t¯得到的Re μ μ t (- m Z 2) = - 0.025比由已知的三体顶点函数gt t¯得到的- 0.0224更接近实验中心值μ μ t Exp = - 0.024。再一次,Im μ μ t (- m z2)部分是由于虚带电电流的贡献,就像在gt情况下一样。我们可以推断,类太空预测是最受欢迎的。