{"title":"Artificial Neural Network Performance Modeling and Evaluation of Additive Manufacturing 3D Printed Parts","authors":"Sivarao Subramonian, Kumaran Kadirgama, Abdulkareem Sh. Mahdi Al-Obaidi, Mohd Shukor Mohd Salleh, Umesh Kumar Vatesh, Satish Pujari, Dharsyanth Rao, Devarajan Ramasamy","doi":"10.48084/etasr.6185","DOIUrl":null,"url":null,"abstract":"This research article presents a comprehensive study on the performance modeling of 3D printed parts using Artificial Neural Networks (ANNs). The aim of this study is to optimize the mechanical properties of 3D printed components through accurate prediction and analysis. The study focuses on the widely employed Fused Deposition Modeling (FDM) technique. The ANN model is trained and validated using experimental data, incorporating input parameters such as temperature, speed, infill direction, and layer thickness to predict mechanical properties including yield stress, Young's modulus, ultimate tensile strength, flexural strength, and elongation at fracture. The results demonstrate the effectiveness of the ANN model with an average error below 10%. The study also reveals the significant impact of process parameters on the mechanical properties of 3D printed parts and highlights the potential for optimizing these parameters to enhance the performance of printed components. The findings of this research contribute to the field of additive manufacturing by providing valuable insights into the optimization of 3D printing processes and facilitating the development of high-performance 3D printed components.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6185","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This research article presents a comprehensive study on the performance modeling of 3D printed parts using Artificial Neural Networks (ANNs). The aim of this study is to optimize the mechanical properties of 3D printed components through accurate prediction and analysis. The study focuses on the widely employed Fused Deposition Modeling (FDM) technique. The ANN model is trained and validated using experimental data, incorporating input parameters such as temperature, speed, infill direction, and layer thickness to predict mechanical properties including yield stress, Young's modulus, ultimate tensile strength, flexural strength, and elongation at fracture. The results demonstrate the effectiveness of the ANN model with an average error below 10%. The study also reveals the significant impact of process parameters on the mechanical properties of 3D printed parts and highlights the potential for optimizing these parameters to enhance the performance of printed components. The findings of this research contribute to the field of additive manufacturing by providing valuable insights into the optimization of 3D printing processes and facilitating the development of high-performance 3D printed components.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.