Rotational Isomerism of the Side Chains of Hydroxypropyl Cellulose in Aqueous Solution Observed Using Attenuated Total Reflectance Infrared Spectroscopy
{"title":"Rotational Isomerism of the Side Chains of Hydroxypropyl Cellulose in Aqueous Solution Observed Using Attenuated Total Reflectance Infrared Spectroscopy","authors":"Mark A. Davies","doi":"10.3390/spectroscj1030010","DOIUrl":null,"url":null,"abstract":"Etherified cellulose derivatives, in contrast to cellulose, are soluble in water at room temperature and have a wide variety of applications. One of their most important characteristics is their decrease in solubility with temperature. The objective of this work was to study the rotational isomerism of the side chains of hydroxypropyl cellulose (HPC) in aqueous solution as sole solute and in the presence of chloride, sulfate, and barium ions as a function of temperature. Infrared Attenuated Total Reflectance spectroscopy was used to measure changes in the side-chain rotational isomerism using the structurally sensitive methylene wagging region as the probe. Decreases in end-gauche and kink conformers were observed. Principal component analysis revealed the presence of multiple forms of HPC at higher molecular weight. The precipitation of HPC as the temperature was increased was accompanied by a reduction in the numbers of end-gauche and kink conformers.","PeriodicalId":88758,"journal":{"name":"The open spectroscopy journal","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open spectroscopy journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/spectroscj1030010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Etherified cellulose derivatives, in contrast to cellulose, are soluble in water at room temperature and have a wide variety of applications. One of their most important characteristics is their decrease in solubility with temperature. The objective of this work was to study the rotational isomerism of the side chains of hydroxypropyl cellulose (HPC) in aqueous solution as sole solute and in the presence of chloride, sulfate, and barium ions as a function of temperature. Infrared Attenuated Total Reflectance spectroscopy was used to measure changes in the side-chain rotational isomerism using the structurally sensitive methylene wagging region as the probe. Decreases in end-gauche and kink conformers were observed. Principal component analysis revealed the presence of multiple forms of HPC at higher molecular weight. The precipitation of HPC as the temperature was increased was accompanied by a reduction in the numbers of end-gauche and kink conformers.