Muhammad Rizwan Rashid Rana, Asif Nawaz, Tariq Ali, Ahmed M. El-Sherbeeny, Waqar Ali
{"title":"A BiLSTM-CF and BiGRU-based Deep Sentiment Analysis Model to Explore Customer Reviews for Effective Recommendations","authors":"Muhammad Rizwan Rashid Rana, Asif Nawaz, Tariq Ali, Ahmed M. El-Sherbeeny, Waqar Ali","doi":"10.48084/etasr.6278","DOIUrl":null,"url":null,"abstract":"The advancement of technology has led to the rise of social media forums and e-commerce platforms, which have become popular means of communication, and people can express their opinions through comments and reviews. Increased accessibility to online feedback helps individuals make informed decisions about product purchases, services, and other decisions. This study used a sentiment analysis-based approach to improve the functionality of the recommendations from user reviews and consider the features (aspects and opinions) of products and services to understand the characteristics and attributes that influence the performance of classification algorithms. The proposed model consists of data preprocessing, word embedding, character representation creation, feature extraction using BiLSTM-CF, and classification using BiGRU. The proposed model was evaluated on different multidomain benchmark datasets demonstrating impressive performance. The proposed model outperformed existing models, offering more promising performance results in recommendations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6278","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of technology has led to the rise of social media forums and e-commerce platforms, which have become popular means of communication, and people can express their opinions through comments and reviews. Increased accessibility to online feedback helps individuals make informed decisions about product purchases, services, and other decisions. This study used a sentiment analysis-based approach to improve the functionality of the recommendations from user reviews and consider the features (aspects and opinions) of products and services to understand the characteristics and attributes that influence the performance of classification algorithms. The proposed model consists of data preprocessing, word embedding, character representation creation, feature extraction using BiLSTM-CF, and classification using BiGRU. The proposed model was evaluated on different multidomain benchmark datasets demonstrating impressive performance. The proposed model outperformed existing models, offering more promising performance results in recommendations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.