The equivariant coarse Baum–Connes conjecture for metric spaces with proper group actions

IF 0.7 2区 数学 Q2 MATHEMATICS
Jintao Deng, Benyin Fu, Qin Wang
{"title":"The equivariant coarse Baum–Connes conjecture for metric spaces with proper group actions","authors":"Jintao Deng, Benyin Fu, Qin Wang","doi":"10.4171/jncg/519","DOIUrl":null,"url":null,"abstract":"The equivariant coarse Baum–Connes conjecture interpolates between the Baum–Connes conjecture for a discrete group and the coarse Baum–Connes conjecture for a proper metric space. In this paper, we study this conjecture under certain assumptions. More precisely, assume that a countable discrete group $\\Gamma$ acts properly and isometrically on a discrete metric space $X$ with bounded geometry, not necessarily cocompact. We show that if the quotient space $X/\\Gamma$ admits a coarse embedding into Hilbert space and $\\Gamma$ is amenable, and that the $\\Gamma$-orbits in $X$ are uniformly equivariantly coarsely equivalent to each other, then the equivariant coarse Baum–Connes conjecture holds for $(X,\\Gamma)$. Along the way, we prove a $K$-theoretic amenability statement for the $\\Gamma$-space $X$ under the same assumptions as above; namely, the canonical quotient map from the maximal equivariant Roe algebra of $X$ to the reduced equivariant Roe algebra of $X$ induces an isomorphism on $K$-theory.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"16 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jncg/519","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The equivariant coarse Baum–Connes conjecture interpolates between the Baum–Connes conjecture for a discrete group and the coarse Baum–Connes conjecture for a proper metric space. In this paper, we study this conjecture under certain assumptions. More precisely, assume that a countable discrete group $\Gamma$ acts properly and isometrically on a discrete metric space $X$ with bounded geometry, not necessarily cocompact. We show that if the quotient space $X/\Gamma$ admits a coarse embedding into Hilbert space and $\Gamma$ is amenable, and that the $\Gamma$-orbits in $X$ are uniformly equivariantly coarsely equivalent to each other, then the equivariant coarse Baum–Connes conjecture holds for $(X,\Gamma)$. Along the way, we prove a $K$-theoretic amenability statement for the $\Gamma$-space $X$ under the same assumptions as above; namely, the canonical quotient map from the maximal equivariant Roe algebra of $X$ to the reduced equivariant Roe algebra of $X$ induces an isomorphism on $K$-theory.
具有适当群作用的度量空间的等变粗糙Baum-Connes猜想
等变粗糙Baum-Connes猜想是在离散群的Baum-Connes猜想和固有度量空间的粗糙Baum-Connes猜想之间进行插值的。本文在一定的假设条件下研究了这一猜想。更准确地说,假设一个可数的离散群$\Gamma$在具有有界几何的离散度量空间$X$上适当地等距作用,不一定是紧致的。我们证明了如果商空间$X/\Gamma$允许粗嵌入Hilbert空间并且$\Gamma$是可接受的,并且$X$中的$\Gamma$-轨道彼此一致等变粗等价,那么对于$(X,\Gamma)$,则等变粗Baum-Connes猜想成立。在此过程中,我们证明了$\Gamma$-空间$X$在相同的假设下的$K$-理论上的适应性陈述;即,从$X$的极大等变Roe代数到$X$的约等变Roe代数的正则商映射在$K$-理论上导出了一个同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信