Numerical modeling of internal flows in tanks with baffles

Vasyl Kovalev, Oleksandr Shibaev, Wei Chenyu
{"title":"Numerical modeling of internal flows in tanks with baffles","authors":"Vasyl Kovalev, Oleksandr Shibaev, Wei Chenyu","doi":"10.20535/2521-1943.2023.7.1.270308","DOIUrl":null,"url":null,"abstract":"The proposed article presents the materials of experimental and mathematical studies of internal inertial flows of an incompressible liquid during its fluctuations in tanks. An analysis of modern problems related to the harmful effect of liquid resonant splashing on tank structures, as well as on the trajectory and nature of the object movement itself with the liquid, was carried out. The use of damping baffles and guide devices in similar closed flows allows to fundamentally change the structure of internal flows, reducing gradients of shock pressures in flows, as well as redistributing the main liquid inertial effects. Numerical modeling of such flows qualitatively confirms the results of experimental studies and allows us to build a rather complex three-dimensional development picture of fluctuations in fluid flows. In addition to the use of the damping baffles structures, it is proposed to make the plane of baffles perforated with different degrees of permeability due to the diameter of the holes and their number. The effect of hydraulic resistance occurs when flow energy is lost due to overcoming artificial obstacles in the form of holes of small diameter. Thus, the shock effects of the flow on the walls of the tank are predicted to have a smaller amplitude and duration. The use of the proposed dampers labyrinth structures allows to control the force effects of the liquid only by hydraulic means and thus reduce the number and dimensions of the internal guide devices.","PeriodicalId":32423,"journal":{"name":"Mechanics and Advanced Technologies","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics and Advanced Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/2521-1943.2023.7.1.270308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The proposed article presents the materials of experimental and mathematical studies of internal inertial flows of an incompressible liquid during its fluctuations in tanks. An analysis of modern problems related to the harmful effect of liquid resonant splashing on tank structures, as well as on the trajectory and nature of the object movement itself with the liquid, was carried out. The use of damping baffles and guide devices in similar closed flows allows to fundamentally change the structure of internal flows, reducing gradients of shock pressures in flows, as well as redistributing the main liquid inertial effects. Numerical modeling of such flows qualitatively confirms the results of experimental studies and allows us to build a rather complex three-dimensional development picture of fluctuations in fluid flows. In addition to the use of the damping baffles structures, it is proposed to make the plane of baffles perforated with different degrees of permeability due to the diameter of the holes and their number. The effect of hydraulic resistance occurs when flow energy is lost due to overcoming artificial obstacles in the form of holes of small diameter. Thus, the shock effects of the flow on the walls of the tank are predicted to have a smaller amplitude and duration. The use of the proposed dampers labyrinth structures allows to control the force effects of the liquid only by hydraulic means and thus reduce the number and dimensions of the internal guide devices.
带有挡板的储罐内部流动的数值模拟
本文介绍了不可压缩液体在储罐内波动时内部惯性流动的实验和数学研究材料。分析了有关液体共振溅射对储罐结构的有害影响以及物体随液体运动的轨迹和性质的现代问题。在类似的封闭流动中使用阻尼挡板和导向装置,可以从根本上改变内部流动的结构,降低流动中的激波压力梯度,并重新分配主要的液体惯性效应。这种流动的数值模拟定性地证实了实验研究的结果,并使我们能够建立一个相当复杂的流体流动波动的三维发展图。除采用阻尼折流板结构外,还建议根据孔的直径和孔数的不同,使折流板的平面具有不同程度的透气性。水力阻力的影响是由于克服了以小口径孔洞为形式的人工障碍而造成的流能损失。因此,流动对罐壁的冲击效应预测具有较小的振幅和持续时间。所提出的阻尼器迷宫结构的使用允许仅通过液压手段控制液体的力效应,从而减少内部导向装置的数量和尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信