Abdelkarim El Mouncharih, Rabi Takassa, Omar Farkad, Abdelaziz Tchenka, El Alami Ibnouelghazi, Driss Abouelaoualim
{"title":"Optical simulations and optimization of highly sensitive biosensor for cancer cell detection","authors":"Abdelkarim El Mouncharih, Rabi Takassa, Omar Farkad, Abdelaziz Tchenka, El Alami Ibnouelghazi, Driss Abouelaoualim","doi":"10.37190/oa230306","DOIUrl":null,"url":null,"abstract":"In this work, using the two-dimensional finite difference time domain method, we are theoretically studying the optical properties of a two-dimensional photonic crystal biosensor based on silicon rods arranged as a square structure in an air bottom with two waveguides and a nanocavity. For this purpose, six different cells are infiltrated into the point defect. These six cells are Jurkat, HeLa, PC-12, MDA-MB-231, MCF-7, and basal cells. As a result, we have successfully detected cancer and benign cases of these cells through resonance peaks in the transmission spectrum. We evaluated the sensitivity, quality factor, detection limit, and figure of merit at different values for sensing region radius for optimization purposes. We report that we observed the maximum sensitivity of 1350 nm/RIU at 0.15 μm for the basal cell. Finally, the proposed biosensor can be a miniaturized structure with extreme sensitivity in cancer cell detection models.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"83 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/oa230306","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, using the two-dimensional finite difference time domain method, we are theoretically studying the optical properties of a two-dimensional photonic crystal biosensor based on silicon rods arranged as a square structure in an air bottom with two waveguides and a nanocavity. For this purpose, six different cells are infiltrated into the point defect. These six cells are Jurkat, HeLa, PC-12, MDA-MB-231, MCF-7, and basal cells. As a result, we have successfully detected cancer and benign cases of these cells through resonance peaks in the transmission spectrum. We evaluated the sensitivity, quality factor, detection limit, and figure of merit at different values for sensing region radius for optimization purposes. We report that we observed the maximum sensitivity of 1350 nm/RIU at 0.15 μm for the basal cell. Finally, the proposed biosensor can be a miniaturized structure with extreme sensitivity in cancer cell detection models.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.