Variable antennas positions solution to reduce pointing errors due to wind speed and temperature coupled effects during free space optical link using matrix Rician pointing error model
Michel Teuma Mbezi, Samuel Eke, Idelette Hermine Judith Som, Ruben Martin Mouangue
{"title":"Variable antennas positions solution to reduce pointing errors due to wind speed and temperature coupled effects during free space optical link using matrix Rician pointing error model","authors":"Michel Teuma Mbezi, Samuel Eke, Idelette Hermine Judith Som, Ruben Martin Mouangue","doi":"10.37190/oa230305","DOIUrl":null,"url":null,"abstract":"Pointing errors (PE) during free space optical (FSO) transmission can be caused by laser beam wander due to thermal and wind dynamic instability. The aim of this work is to study the coupled effects of temperature and wind speed on PE using matrix Rician pointing error (MRPE) model; then show how variable antennas height can reduce PE due to wind speed and temperature coupled effects. To achieve this purposes, average PE expression was established using MRPE model. Then considering a Gaussian beam wave and Monin–Obukhov similarity functions for the structure parameters of temperature, explicit relationship was established between average PE, temperature and wind speed. It comes out of this study that under dynamic turbulence, one can appropriately modify temperature to reduce PE due to dynamic instability and reciprocally. Depending on turbulence large cells or frozen turbulence eddies distribution, PE can be reduced by appropriately modified antennas height or the distance between transmitter and receiver. That is why this work suggests to install variable or dynamic antennas (rather than fixed ones) which could intelligently modify its positions according to laser beam wander created by atmospheric turbulence.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"42 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/oa230305","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Pointing errors (PE) during free space optical (FSO) transmission can be caused by laser beam wander due to thermal and wind dynamic instability. The aim of this work is to study the coupled effects of temperature and wind speed on PE using matrix Rician pointing error (MRPE) model; then show how variable antennas height can reduce PE due to wind speed and temperature coupled effects. To achieve this purposes, average PE expression was established using MRPE model. Then considering a Gaussian beam wave and Monin–Obukhov similarity functions for the structure parameters of temperature, explicit relationship was established between average PE, temperature and wind speed. It comes out of this study that under dynamic turbulence, one can appropriately modify temperature to reduce PE due to dynamic instability and reciprocally. Depending on turbulence large cells or frozen turbulence eddies distribution, PE can be reduced by appropriately modified antennas height or the distance between transmitter and receiver. That is why this work suggests to install variable or dynamic antennas (rather than fixed ones) which could intelligently modify its positions according to laser beam wander created by atmospheric turbulence.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.