Noise quantization simulation analysis of optical convolutional networks

IF 0.7 4区 物理与天体物理 Q4 OPTICS
Optica Applicata Pub Date : 2023-01-01 DOI:10.37190/oa230311
None Ye Zhang, None Saining Zhang, None Danni Zhang, None Yanmei Su, None Junkai Yi, None Pengfei Wang, None Ruiting Wang, None Guangzhen Luo, None Xuliang Zhou, None Jiaoqing Pan
{"title":"Noise quantization simulation analysis of optical convolutional networks","authors":"None Ye Zhang, None Saining Zhang, None Danni Zhang, None Yanmei Su, None Junkai Yi, None Pengfei Wang, None Ruiting Wang, None Guangzhen Luo, None Xuliang Zhou, None Jiaoqing Pan","doi":"10.37190/oa230311","DOIUrl":null,"url":null,"abstract":"Optical neural network (ONN) has been regarded as one of the most prospective techniques in the future, due to its high-speed and low power cost. However, the realization of optical convolutional neural network (CNN) in non-ideal cases still remains a big challenge. In this paper, we propose an optical convolutional networks system for classification problems by applying general matrix multiply (GEMM) technology. The results show that under the influence of noise, this system still has good performance with low TOP-1 and TOP-5 error rates of 44.26% and 14.51% for ImageNet. We also propose a quantization model of CNN. The noise quantization model reaches a sufficient prediction accuracy of about 96% for MNIST handwritten dataset.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"9 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/oa230311","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Optical neural network (ONN) has been regarded as one of the most prospective techniques in the future, due to its high-speed and low power cost. However, the realization of optical convolutional neural network (CNN) in non-ideal cases still remains a big challenge. In this paper, we propose an optical convolutional networks system for classification problems by applying general matrix multiply (GEMM) technology. The results show that under the influence of noise, this system still has good performance with low TOP-1 and TOP-5 error rates of 44.26% and 14.51% for ImageNet. We also propose a quantization model of CNN. The noise quantization model reaches a sufficient prediction accuracy of about 96% for MNIST handwritten dataset.
光卷积网络噪声量化仿真分析
光神经网络(ONN)以其高速、低功耗的特点被认为是未来最有发展前景的技术之一。然而,在非理想情况下实现光学卷积神经网络(CNN)仍然是一个很大的挑战。本文提出了一种基于广义矩阵乘法技术的光学卷积网络分类系统。结果表明,在噪声的影响下,该系统仍然具有良好的性能,对ImageNet的TOP-1和TOP-5错误率分别为44.26%和14.51%。我们还提出了CNN的量化模型。噪声量化模型对MNIST手写数据集的预测精度达到96%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optica Applicata
Optica Applicata 物理-光学
CiteScore
1.00
自引率
16.70%
发文量
21
审稿时长
4 months
期刊介绍: Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信