{"title":"Nonregular designs from Paley’s Hadamard matrices: Generalized resolution, projectivity and hidden projection property","authors":"Guanzhou Chen, Chenlu Shi, Boxin Tang","doi":"10.1214/23-ejs2148","DOIUrl":null,"url":null,"abstract":"Nonregular designs are attractive, as compared with regular designs, not just because they have flexible run sizes but also because of their performances in terms of generalized resolution, projectivity, and hidden projection property. In this paper, we conduct a comprehensive study on three classes of designs that are obtained from Paley’s two constructions of Hadamard matrices. In terms of generalized resolution, we complete the study of Shi and Tang [15] on strength-two designs by adding results on strength-three designs. In terms of projectivty and hidden projection property, our results substantially expand those of Bulutoglu and Cheng [2]. For the purpose of practical applications, we conduct an extensive search of minimum G-aberration designs from those with maximum generalized resolutions and results are obtained for strength-two designs with 36, 44, 48, 52, 60, 64, 96 and 128 runs and strength-three designs with 72, 88 and 120 runs.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"6 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejs2148","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonregular designs are attractive, as compared with regular designs, not just because they have flexible run sizes but also because of their performances in terms of generalized resolution, projectivity, and hidden projection property. In this paper, we conduct a comprehensive study on three classes of designs that are obtained from Paley’s two constructions of Hadamard matrices. In terms of generalized resolution, we complete the study of Shi and Tang [15] on strength-two designs by adding results on strength-three designs. In terms of projectivty and hidden projection property, our results substantially expand those of Bulutoglu and Cheng [2]. For the purpose of practical applications, we conduct an extensive search of minimum G-aberration designs from those with maximum generalized resolutions and results are obtained for strength-two designs with 36, 44, 48, 52, 60, 64, 96 and 128 runs and strength-three designs with 72, 88 and 120 runs.
期刊介绍:
The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.