{"title":"In Situ Compositional Analysis of Tomato Plants and Cell Wall Using Fiber Optic Fourier-Transform Near-Infrared Spectroscopy","authors":"Raghav Tewari, Ritu Joshi","doi":"10.1155/2023/2982941","DOIUrl":null,"url":null,"abstract":"This research was intended to define and interpret cell wall attributes and other chemical composition of eight different varieties of tomato plants by utilizing fiber optic Fourier-transform near-infrared spectroscopy (FT-NIR) to acquire in situ chemical signatures of leaf, flower, fruit, and stem of tomato plant and cell wall at different developmental stages. Chemical spectral signatures of the tomato’s leaf, flower, fruit, and stem were only acquired during its session and in live mode such as green, yellow, and red in cell wall color. The spectral signature analysis of each tomato plant was performed to see substantial differences in chemical compositions using chemometric data modeling of FT-NIR spectra. In addition, principal component analysis (PCA) was performed to discriminate leaf, flower, fruit, and stem from the same variety. PCA was also performed to differentiate eight different varieties of tomato plants. The study showed how in situ FT-NIR could distinguish eight types of tomato leaf, flower, fruit, and stem chemical composition at different developmental stages related to cell wall and other attributes. This study has also demonstrated how in situ FT-NIR can discriminate between rusty vs. healthy leaf and intact fruit vs. off-the-plant fruit. The main objective of this study is to present the chemical signature differences in the live and developing tomato plants to improve crucial factors of tomatoes that would benefit plant breeding, tomato cell wall study, and ultimately human health.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2982941","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This research was intended to define and interpret cell wall attributes and other chemical composition of eight different varieties of tomato plants by utilizing fiber optic Fourier-transform near-infrared spectroscopy (FT-NIR) to acquire in situ chemical signatures of leaf, flower, fruit, and stem of tomato plant and cell wall at different developmental stages. Chemical spectral signatures of the tomato’s leaf, flower, fruit, and stem were only acquired during its session and in live mode such as green, yellow, and red in cell wall color. The spectral signature analysis of each tomato plant was performed to see substantial differences in chemical compositions using chemometric data modeling of FT-NIR spectra. In addition, principal component analysis (PCA) was performed to discriminate leaf, flower, fruit, and stem from the same variety. PCA was also performed to differentiate eight different varieties of tomato plants. The study showed how in situ FT-NIR could distinguish eight types of tomato leaf, flower, fruit, and stem chemical composition at different developmental stages related to cell wall and other attributes. This study has also demonstrated how in situ FT-NIR can discriminate between rusty vs. healthy leaf and intact fruit vs. off-the-plant fruit. The main objective of this study is to present the chemical signature differences in the live and developing tomato plants to improve crucial factors of tomatoes that would benefit plant breeding, tomato cell wall study, and ultimately human health.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.