{"title":"Fine bounds for best constants of fractional subcritical Sobolev embeddings and applications to nonlocal PDEs","authors":"Daniele Cassani, Lele Du","doi":"10.1515/anona-2023-0103","DOIUrl":null,"url":null,"abstract":"Abstract We establish fine bounds for best constants of the fractional subcritical Sobolev embeddings <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:msubsup> <m:mrow> <m:mi>W</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mspace width=\"0.33em\" /> <m:mo>↪</m:mo> <m:mspace width=\"0.33em\" /> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> {W}_{0}^{s,p}(\\Omega )\\hspace{0.33em}\\hookrightarrow \\hspace{0.33em}{L}^{q}(\\Omega ), where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:math> N\\ge 1 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> </m:math> 0\\lt s\\lt 1 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:math> p=1,2 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo><</m:mo> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>N</m:mi> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>s</m:mi> <m:mi>p</m:mi> </m:mrow> </m:mfrac> </m:math> 1\\le q\\lt {p}_{s}^{\\ast }=\\frac{Np}{N-sp} , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\Omega \\subset {{\\mathbb{R}}}^{N} is a bounded smooth domain or the whole space <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{N} . Our results cover the borderline case <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> p=1 , the Hilbert case <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> p=2 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>></m:mo> <m:mn>2</m:mn> <m:mi>s</m:mi> </m:math> N\\gt 2s , and the so-called Sobolev limiting case <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> N=1 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:math> s=\\frac{1}{2} , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> p=2 , where a sharp asymptotic estimate is given by means of a limiting procedure. We apply the obtained results to prove existence and non-existence of solutions for a wide class of nonlocal partial differential equations.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anona-2023-0103","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We establish fine bounds for best constants of the fractional subcritical Sobolev embeddings W0s,p(Ω)↪Lq(Ω), {W}_{0}^{s,p}(\Omega )\hspace{0.33em}\hookrightarrow \hspace{0.33em}{L}^{q}(\Omega ), where N≥1 N\ge 1 , 0<s<1 0\lt s\lt 1 , p=1,2 p=1,2 , 1≤q<ps∗=NpN−sp 1\le q\lt {p}_{s}^{\ast }=\frac{Np}{N-sp} , and Ω⊂RN \Omega \subset {{\mathbb{R}}}^{N} is a bounded smooth domain or the whole space RN {{\mathbb{R}}}^{N} . Our results cover the borderline case p=1 p=1 , the Hilbert case p=2 p=2 , N>2s N\gt 2s , and the so-called Sobolev limiting case N=1 N=1 , s=12 s=\frac{1}{2} , and p=2 p=2 , where a sharp asymptotic estimate is given by means of a limiting procedure. We apply the obtained results to prove existence and non-existence of solutions for a wide class of nonlocal partial differential equations.