{"title":"Fine bounds for best constants of fractional subcritical Sobolev embeddings and applications to nonlocal PDEs","authors":"Daniele Cassani, Lele Du","doi":"10.1515/anona-2023-0103","DOIUrl":null,"url":null,"abstract":"Abstract We establish fine bounds for best constants of the fractional subcritical Sobolev embeddings <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:msubsup> <m:mrow> <m:mi>W</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mspace width=\"0.33em\" /> <m:mo>↪</m:mo> <m:mspace width=\"0.33em\" /> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> {W}_{0}^{s,p}(\\Omega )\\hspace{0.33em}\\hookrightarrow \\hspace{0.33em}{L}^{q}(\\Omega ), where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:math> N\\ge 1 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> </m:math> 0\\lt s\\lt 1 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:math> p=1,2 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo><</m:mo> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>N</m:mi> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>s</m:mi> <m:mi>p</m:mi> </m:mrow> </m:mfrac> </m:math> 1\\le q\\lt {p}_{s}^{\\ast }=\\frac{Np}{N-sp} , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\Omega \\subset {{\\mathbb{R}}}^{N} is a bounded smooth domain or the whole space <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{N} . Our results cover the borderline case <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> p=1 , the Hilbert case <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> p=2 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>></m:mo> <m:mn>2</m:mn> <m:mi>s</m:mi> </m:math> N\\gt 2s , and the so-called Sobolev limiting case <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> N=1 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:math> s=\\frac{1}{2} , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> p=2 , where a sharp asymptotic estimate is given by means of a limiting procedure. We apply the obtained results to prove existence and non-existence of solutions for a wide class of nonlocal partial differential equations.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"45 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anona-2023-0103","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We establish fine bounds for best constants of the fractional subcritical Sobolev embeddings W0s,p(Ω)↪Lq(Ω), {W}_{0}^{s,p}(\Omega )\hspace{0.33em}\hookrightarrow \hspace{0.33em}{L}^{q}(\Omega ), where N≥1 N\ge 1 , 0<s<1 0\lt s\lt 1 , p=1,2 p=1,2 , 1≤q<ps∗=NpN−sp 1\le q\lt {p}_{s}^{\ast }=\frac{Np}{N-sp} , and Ω⊂RN \Omega \subset {{\mathbb{R}}}^{N} is a bounded smooth domain or the whole space RN {{\mathbb{R}}}^{N} . Our results cover the borderline case p=1 p=1 , the Hilbert case p=2 p=2 , N>2s N\gt 2s , and the so-called Sobolev limiting case N=1 N=1 , s=12 s=\frac{1}{2} , and p=2 p=2 , where a sharp asymptotic estimate is given by means of a limiting procedure. We apply the obtained results to prove existence and non-existence of solutions for a wide class of nonlocal partial differential equations.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.