{"title":"End super dominating sets in graphs","authors":"Saieed Akbari, Nima Ghanbari, Michael A. Henning","doi":"10.7151/dmgt.2519","DOIUrl":null,"url":null,"abstract":"Let $G=(V,E)$ be a simple graph. A dominating set of $G$ is a subset $S\\subseteq V$ such that every vertex not in $S$ is adjacent to at least one vertex in $S$. The cardinality of a smallest dominating set of $G$, denoted by $\\gamma(G)$, is the domination number of $G$. Two vertices are neighbors if they are adjacent. A super dominating set is a dominating set $S$ with the additional property that every vertex in $V \\setminus S$ has a neighbor in $S$ that is adjacent to no other vertex in $V \\setminus S$. Moreover if every vertex in $V \\setminus S$ has degree at least~$2$, then $S$ is an end super dominating set. The end super domination number is the minimum cardinality of an end super dominating set. We give applications of end super dominating sets as main servers and temporary servers of networks. We determine the exact value of the end super domination number for specific classes of graphs, and we count the number of end super dominating sets in these graphs. Tight upper bounds on the end super domination number are established, where the graph is modified by vertex (edge) removal and contraction.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"266 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgt.2519","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $G=(V,E)$ be a simple graph. A dominating set of $G$ is a subset $S\subseteq V$ such that every vertex not in $S$ is adjacent to at least one vertex in $S$. The cardinality of a smallest dominating set of $G$, denoted by $\gamma(G)$, is the domination number of $G$. Two vertices are neighbors if they are adjacent. A super dominating set is a dominating set $S$ with the additional property that every vertex in $V \setminus S$ has a neighbor in $S$ that is adjacent to no other vertex in $V \setminus S$. Moreover if every vertex in $V \setminus S$ has degree at least~$2$, then $S$ is an end super dominating set. The end super domination number is the minimum cardinality of an end super dominating set. We give applications of end super dominating sets as main servers and temporary servers of networks. We determine the exact value of the end super domination number for specific classes of graphs, and we count the number of end super dominating sets in these graphs. Tight upper bounds on the end super domination number are established, where the graph is modified by vertex (edge) removal and contraction.
期刊介绍:
The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.