{"title":"Motivating Data Science Students to Participate and Learn","authors":"Deniz Marti, Michael D. Smith","doi":"10.1162/99608f92.d3b2eadd","DOIUrl":null,"url":null,"abstract":"Data science education increasingly involves human subjects and societal issues such as privacy, ethics, and fairness. Data scientists need to be equipped with skills to tackle the complexities of the societal context surrounding their data science work. In this article, we offer insights into how to structure our data science classes so that they motivate students to deeply engage with material about societal context and lean toward the types of conversations that will produce long-lasting growth in critical thinking skills. In particular, we describe a novel assessment tool called participation portfolio, which is motivated by a framework that promotes student autonomy, self-reflection, and the building of a learning community. We compare studentsâ participation before and after implementing this assessment tool, and our results suggest that this tool increased student participation and helped them move toward course learning objectives.","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harvard data science review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/99608f92.d3b2eadd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Data science education increasingly involves human subjects and societal issues such as privacy, ethics, and fairness. Data scientists need to be equipped with skills to tackle the complexities of the societal context surrounding their data science work. In this article, we offer insights into how to structure our data science classes so that they motivate students to deeply engage with material about societal context and lean toward the types of conversations that will produce long-lasting growth in critical thinking skills. In particular, we describe a novel assessment tool called participation portfolio, which is motivated by a framework that promotes student autonomy, self-reflection, and the building of a learning community. We compare studentsâ participation before and after implementing this assessment tool, and our results suggest that this tool increased student participation and helped them move toward course learning objectives.