On Assignment Problems Related to Gromov–Wasserstein Distances on the Real Line

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Robert Beinert, Cosmas Heiss, Gabriele Steidl
{"title":"On Assignment Problems Related to Gromov–Wasserstein Distances on the Real Line","authors":"Robert Beinert, Cosmas Heiss, Gabriele Steidl","doi":"10.1137/22m1497808","DOIUrl":null,"url":null,"abstract":"Let and , , be real numbers. We show by an example that the assignment problem \\begin{align*} \\max_{\\sigma \\in S_n} F_\\sigma (x,y) := \\frac 12 \\sum_{i,k=1}^n |x_i- x_k|^\\alpha \\, |y_{\\sigma (i)}- y_{\\sigma (k)}|^\\alpha, \\quad \\alpha \\gt 0, \\end{align*} is in general neither solved by the identical permutation nor the anti-identical permutation if . Indeed the above maximum can be, depending on the number of points, arbitrarily far away from and . The motivation to deal with such assignment problems came from their relation to Gromov–Wasserstein distances, which have recently received a lot of attention in imaging and shape analysis.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1497808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

Let and , , be real numbers. We show by an example that the assignment problem \begin{align*} \max_{\sigma \in S_n} F_\sigma (x,y) := \frac 12 \sum_{i,k=1}^n |x_i- x_k|^\alpha \, |y_{\sigma (i)}- y_{\sigma (k)}|^\alpha, \quad \alpha \gt 0, \end{align*} is in general neither solved by the identical permutation nor the anti-identical permutation if . Indeed the above maximum can be, depending on the number of points, arbitrarily far away from and . The motivation to deal with such assignment problems came from their relation to Gromov–Wasserstein distances, which have recently received a lot of attention in imaging and shape analysis.
实线上与Gromov-Wasserstein距离有关的分配问题
设和为实数。我们通过一个例子证明了分配问题\begin{align*} \max_{\sigma \in S_n} F_\sigma (x,y) := \frac 12 \sum_{i,k=1}^n |x_i- x_k|^\alpha \, |y_{\sigma (i)}- y_{\sigma (k)}|^\alpha, \quad \alpha \gt 0, \end{align*}一般既不能用同置换解决,也不能用反同置换解决。实际上,根据点的数量,上述最大值可以是任意距离和的值。处理这种赋值问题的动机来自于它们与Gromov-Wasserstein距离的关系,后者最近在成像和形状分析中受到了很多关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信